Αιθανονιτρίλιο

Από testwiki
Αναθεώρηση ως προς 12:49, 10 Αυγούστου 2024 από τον imported>MARKbot (Ρομπότ: Αυτόματη αντικατάσταση κειμένου (-{{PAGENAME}} +{{subst:PAGENAME}}).)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Πρότυπο:Πληροφορίες χημικής ένωσης

Το αιθανονιτρίλιο ή ακετονιτρίλιο ή μεθυλοκυανίδιο ή κυανομεθάνιο ή 1-αζαπροπίνιο είναι το απλούστερο νιτρίλιο, με σύντομο συντακτικό τύπο CH3CN. Είναι ένα άχρωμο υγρό. Παράγεται κυρίως ως παραπροϊόν της παραγωγής προπενονιτρίλιου (CH2=CHCN). Χρησιμοποιείται κυρίως ως ένας πολικός απρωτικός διαλύτης στον καθαρισμό του βουταδιένιου-1,3. Στα εργαστήρια χρησιμοποιείται σαν ένας μέτριας πολικότητας διαλύτης, αναμίξιμος με το νερό και βολική θερμική κλίμακα στην οποία βρίσκεται στην υγρή κατάσταση. Διαλύει μια μεγάλη γκάμα ιονικών και μη πολικών ενώσεων και είναι χρήσιμο στην κινητή φάση της HPLC και της LCMS. Με βάση τον χημικό τύπο, C2H3N, έχει τα ακόλουθα πέντε (5) ισομερή θέσης (όχι όλα σταθερά):

  1. Αιθιναμίνη με σύντομο συντακτικό τύπο HC ≡ CNH2.
  2. Αιθενιμίνη με σύντομο συντακτικό τύπο CH2=C=NH.
  3. Αιθανισονιτρίλιο με σύντομο συντακτικό τύπο CH3N=C.
  4. 1,1,2-επαζαιθάνιο ή αζιρίνη-1 με σύντομο συντακτικό τύπο
  5. 1,2-επαζαιθένιο ή αζιρίνη-2 με σύντομο συντακτικό τύπο

Δομή

Δεσμοί[1][2]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C ≡ Ν σ 2sp-2sp 118 pm 6% C+ N-
π 2py-2py
π 2pz-2pz
C-C σ 2sp3-2sp 147 pm
Στατιστικό ηλεκτρικό φορτίο[3]
N -0,18
C#2 -0,09
Η (H-C) +0,03
C#1 +0,18

Παραγωγή

Με αμινοξείδωση αιθανίου

Βιομηχανικά παράγεται συνήθως ως παραπροϊόν της παραγωγής προπενονιτρίλιου. Στην περίπτωση του αιθανονιτριλίου αυτό γίνεται με καταλυτική αμινοξείδωση αιθανίου:

2CH3CH3+2NH3+3O22CH3CN+6H2O

Με κυάνωση μεθυλαλογονιδίου

Με επίδραση κυανιούχου καλίου σε μεθυλαλογονίδιο (CH3X), παράγεται αιθανονιτρίλιο[4]:

CH3X+KCNCH3CN+KX

Με αφυδάτωση αιθαναμιδίου

Με επίδραση αφυδατικών μέσων, όπως πεντοξείδιο του φωσφόρου (P2O5) ή πενταχλωριούχο φωσφόρο (PCl5) ή θειονυλοχλωρίδιο (SOCl2), σε αιθαναμίδιο παράγεται αιθανονιτρίλιο[5]:

CH3CONH2P2O5η´PCl5η´SOCl2CH3CN+H2O

Με αφυδάτωση αιθανυδροξυλιμίνης

Με επίδραση αφυδατικών μέσων, όπως πεντοξείδιο του φωσφόρου (P2O5) ή αιθανικού ανυδρίτη [(CH3CO)2O] σε αιθανυδροξυλιμίνη (CH3CH=NOH), παράγεται αιθανονιτρίλιο[6]:

CH3CH=NOHP2O5η´(CH3CO)2OCH3CN+H2O

Με επίδραση μεθυλομαγνησιαλογονιδίου σε χλωροκυάνιο

Με επίδραση μεθυλομαγνησιαλογονίδιου σε χλωροκυάνιο (ClCN) παράγεται αιθανονιτρίλιο[7]:

NaCN+Cl2NaCl+ClCN
CH3X+Mg|Et2O|CH3MgX+ClCNCH3CN+MgXCl

Χημικές ιδιότητες και παράγωγα

Υδρόλυση

1. Με μερική υδρόλυση αιθανονιτριλίου, παράγεται αιθαναμίδιο[8]:

CH3CN+H2OCH3CONH2

2. Με πλήρη υδρόλυση αιθανονιτριλίου, παράγεται αιθανικό οξύ[8]:

CH3CN+2H2OCH3COOH+NH3

Υδροχλωρίωση

Με επίδραση υδροχλωρίου (HCl) παράγεται χλωριούχο 1-χλωρααιθανιμμώνιο[9]:

CH3CN+2HClCH3C(Cl)=NH2Cl

Αμμωνίωση

Με επίδραση αμμωνίας παράγεται 1-ιμινοαιθαναμίνη:

CH3CN+NH3CH3C(=NH)NH2

Παραγωγή μεθυλοκετόνης

Με επίδραση οργανομαγνησιακής ένωσης (RMgX) και έπειτα υδρόλυση, παράγεται μεθυλοκετόνη

CH3CN+RMgXRC(CH3)=NMgX+2H2ORCOCH3+Mg(OH)X+NH3

Υδρογόνωση

1. Με καταλυτική υδρογόνωση παράγεται αιθαναμίνη:

CH3CN+2H2NiCH3CH2NH2

2. Με επίδραση λιθιοαργιλιοϋδρίδιου παράγεται αιθαναμίνη:

2CH3CN+LiAlH4+2H2ONi2CH3CH2NH2+LiAlO2

Παραγωγή ενώσεων συναρμογής

Παράγει εύκολα διάφορες ενώσεις συναρμογής. Π.χ. με επίδραση χλωριούχου παλλάδιου παράγεται δι(μεθυλοκυανο)διχλωροπαλλάδιο:

PdCl2+2CH3CN[PdCl2(CH3CN)2]

Εφαρμογές

Το αιθανονιτρίλιο χρησιμοποιήθηκε κυρίως ως ένας διαλύτης καθαρισμού του βουταδιένιου-1,3 σε διυλιστήρια. Χρησιμοποιήθηκε ευρύτατα σε εφαρμογές μπαταριών εξαιτίας της σχετικά μεγάλης διηλεκτρικής σταθεράς του και την ικανότητά του να διαλύει ηλεκτρολύτες. Για παρόμοιους λόγους είναι δημοφιλής διαλύτης στην κυκλική βολταμετρία. Το χαμηλό του ιξώδες και η σχετικά χαμηλή χημική του δραστικότητα το έκαναν επίσης δημοφιλή επιλογή για την υγρή χρωματογραφία. Παίζει ακόμη σημαντικό ρόλο ως κύριος διαλύτης στην παραγωγή ολιγονουκλεοτιδίων DNA από μονομερή. Βιομηχανικά χρησιμοποιήθηκε ως διαλύτης για την παραγωγή φαρμακευτικών και φωτογραφικών φιλμ[10]. Χρησιμοποιείται ακόμη για τη σύνθεση διαφόρων οργανικών ενώσεων, καθώς και ενώσεων συναρμογής.

Έλλειψη αιθανονιτριλίου το χρονικό διάστημα 2008-2009

Αρχίζοντας από τον Οκτώβριο του 2008 η παγκόσμια διαθεσιμότητα του αιθανονιτριλίου έπεσε σε χαμηλά επίπεδα, γιατί η κινεζική παραγωγή αιθανονιτριλίου σταμάτησε εξαιτίας της οργάνωσης των Ολυμπιακών Αγώνων. Επιπλέον, συνέπεσε ένα μεγάλο εργοστάσιο παραγωγής αιθανονιτριλίου στο Τέξας των ΗΠΑ να πάθει βλάβη εξαιτίας του κυκλώνα Ike[11]. Ακόμη περισσότερο η παραγωγή του αιθανονιτριλίου αυτήν τη χρονιά μειώθηκε κι άλλο και εξαιτίας της οικονομικής ύφεσης. Για όλους τους παραπάνω λόγους μειώθηκε και κάθε παραγωγή που βασίζονταν στο αιθανονιτρίλιο, όπως είναι η παραγωγή ακρυλικών υφασμάτων και ελαστικών που περιέχουν αιθανονιτρίλιο, βουταδιένιο-1,3 και στυρόλιο (ABS). Επειδή το αιθαονιτρίλιο βιομηχανικά είναι παραπροϊόν της παραγωγής προπενονιτρίλιου, μειώθηκε ανάλογα και η παραγωγή αυτής της ένωσης και των παραγώγων της[12]. Η μεγάλη αυτή παγκόσμια έλλειψη αυτών των δύο χημικών και των παραγώγων τους συνεχίστηκε ως τις αρχές του 2009, οπότε και καλύφθηκε.

Σημειώσεις και αναφορές

  1. Τα δεδομένα προέρχονται εν μέρει από το Table of periodic properties of thε Elements, Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 34.
  2. LeBlanc, Jr., O. H.; Laurie, V. W.; Gwinn, W. D. “Microwave Spectrum, Structure, and Dipole Moment of Formyl Fluoride” The Journal of Chemical Physics 1960, volume 33, pp. 598-600.
  3. Υπολογισμένο βάσει του ιονισμού από τον παραπάνω πίνακα
  4. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 297, §13.2.Δ1.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 302, §13.6.2. και σελ. 297, §13.2.Δ2
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 297, §13.2.Δ3
  7. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 297, §13.2.Δ4
  8. 8,0 8,1 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 304, §13.7.1
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 304, §13.7.2
  10. Spanish Ministry of Health (2002), Acetonitrile. Summary Risk Assessment Report, Ispra (VA), Italy: European Chemicals Bureau, Special Publication I.01.65, http://ecb.jrc.it/DOCUMENTS/Existing-Chemicals/RISK_ASSESSMENT/SUMMARY/acetonitrilesum006.pdf Πρότυπο:Webarchive
  11. Lowe, Derek (2009), The Great Acetonitrile Shortage, Corante, http://pipeline.corante.com/archives/2009/01/22/the_great_acetonitrile_shortage.php Πρότυπο:Webarchive
  12. Chemical & Engineering News, 86(47), p. 27 November 24, 2008

Πηγές

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου: Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, Χημεία Οργανικών Ενώσεων, παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ν.Α. Πετάση: Ασκήσεις και προβλήματα Οργανικής Χημείας, 1982
  • Δημήτριου Ν. Νικολαΐδη: Ειδικά μαθήματα Οργανικής Χημείας, Θεσσαλονίκη 1983.


Πρότυπο:Νιτρίλια Πρότυπο:Authority control