65537-γωνο

Από testwiki
Αναθεώρηση ως προς 16:05, 2 Σεπτεμβρίου 2022 από τον imported>UnaToFiAN-1 (Εξωτερικοί σύνδεσμοι)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
Κανονικό 65537-γωνο
Τύπος Κανονικό πολύγωνο
Πλευρές και κορυφές 65537
Schläfli {65537}
Coxeter-Dynkin Πρότυπο:CDD
Συμμετρία Διεδρική D65537
Εσωτερική γωνία ≈179.99°
Διπλό πολύγωνο το ίδιο
Ιδιότητες κυρτό, κυκλικό, ισόπλευρο, ισογώνιο, ισότοξο

Στη γεωμετρία, το 65537-γωνο είναι ένα πολύγωνο με 65537 πλευρές. Το άθροισμα των εσωτερικών γωνιών οποιουδήποτε μη αυτοτεμνόμενου 65537-γώνου είναι 23,592,600°.

Κανονικό 65537-γωνο

Ένα κανονικό 65537-γωνο, με πλευρά μήκους t, έχει εμβαδόν:

A=655374t2cotπ65537

Ένα πλήρως κανονικό 65537-γωνο δεν ξεχωρίζει οπτικά από έναν κύκλο και η περίμετρός του διαφέρει από εκείνη του εγγεγραμμένου κύκλου του περίπου κατά 15 μέρη ανά δισεκατομμύριο.

Κατασκευή

Το κανονικό 65537-γωνο (που όλες οι πλευρές του είναι ιδίου μήκους και όλες οι γωνίες του είναι ίσες) έχει αρκετό ενδιαφέρον ως κατασκευάσιμο πολύγωνο, διότι μπορεί να κατασκευαστεί με κανόνα και διαβήτη. Αυτό οφείλεται στο γεγονός ότι το 65537 είναι πρώτος αριθμός Φερμά, ο οποίος είναι της μορφής 2(2n) + 1 (στην περίπτωση αυτή n = 4). Έτσι, οι τιμές cosπ65537 και cos2π65537 είναι 32768 μοιρών αλγεβρικοί αριθμοί και όπως όλοι οι κατασκευάσιμοι αριθμοί μπορεί να γραφτούν χρησιμοποιώντας τετραγωνικές ρίζες και όχι ρίζες υψηλότερης τάξης.

Αν και από το 1801 ήταν γνωστό στον Καρλ Φρίντριχ Γκάους ότι ήταν κατασκευάσιμο το κανονικό 65537-γωνο, οι πρώτες σαφείς κατασκευές του δόθηκαν από τον Γιόχαν Γκούσταβ Χέρμες το 1894, και καθώς η κατασκευή είναι πολύ περίπλοκη, δαπάνησε 10 χρόνια για την ολοκλήρωση του 200 σελίδων χειρογράφου του.[1]

Μια άλλη μέθοδος περιλαμβάνει τη χρήση το πολύ 1332 κύκλων Καρλάιλ (τα πρώτα στάδια αυτής της μεθόδου απεικονίζονται παρακάτω). Αυτή η μέθοδος αντιμετωπίζει πρακτικά προβλήματα, όπως ότι ένας από αυτούς τους κύκλους Καρλάιλ λύνει την τετραγωνική εξίσωση x2 + x − 16384 = 0 (το 16384 ισούται με 214).[2]

Συμμετρία

Το κανονικό 65537-γωνο έχει συμμετρία Dih65537, τάξης 131074. Καθώς το 65537 είναι πρώτος αριθμός υπάρχει μία υποομάδα με διεδρική συμμετρία Dih1, και δύο κυκλικές ομάδες συμμετρίας: Z65537 και Z1.

65537-γραμμα

Το 65537-γραμμα είναι ένα αστεροειδές πολύγωνο με 65537 πλευρές. Καθώς το 65537 είναι πρώτος αριθμός, υπάρχουν 32767 κανονικές μορφές που παράγονται από τα σύμβολα Schläfli {65537/n} για όλους του φυσικούς αριθμούς 2 ≤ n ≤ 32768, δεδομένου ότι:

655372=32768

Παραπομπές

Βιβλιογραφία

  • Robert Dixon, Mathographics, New York: Dover, 1991, p. 53.
  • Benjamin Bold, Famous Problems of Geometry and How to Solve Them, New York: Dover, 1982, p. 70. ISBN 978-0-4862-4297-2
  • H. S. M. Coxeter, Introduction to Geometry, 2nd ed. New York: Wiley, 1969. Chapter 2, Regular polygons.
  • Leonard Eugene Dickson, Constructions with Ruler and Compasses; Regular Polygons, Ch. 8 in Monographs on Topics of Modern Mathematics.
  • J. W. A. Young ed. Relevant to the Elementary Field, New York: Dover, 1955, pp. 352–386.

Εξωτερικοί σύνδεσμοι


Πρότυπο:Κανονικά πολύγωνα