Θεώρημα Αλπερίν–Μπράουερ–Γκορενστείν

Από testwiki
Αναθεώρηση ως προς 23:26, 30 Μαΐου 2024 από τον imported>InternetArchiveBot (Διάσωση 1 πηγών και υποβολή 0 για αρχειοθέτηση.) #IABot (v2.0.9.5)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Πρότυπο:Χωρίς παραπομπές

Στα μαθηματικά, το θεώρημα  Alperin–Μπράουερ–Γκορενστείν χαρακτηρίζει τις πεπερασμένη απλές ομάδες με quasidihedral ή Sylow 2-υποομάδες. Αυτές είναι ισόμορφες είτε με τρισδιάστατες προβολικές ειδικές γραμμικές ομάδες ή με προβολικές ειδικές ενιαίες ομάδες πάνω από πεπερασμένα σώματα περιττής τάξης, βασισμένο στην συγκεκριμένη αντιστοιχία, ή με την Mathieu ομάδα M11. Οι Πρότυπο:Harvard citation text απέδειξαν, κατά τη διάρκεια των 261 σελίδων την υποδιαίρεση με χρήση 2-fusion που δόθηκε ως άσκηση στον Πρότυπο:Harvard citation text, και παρουσιάστηκε λεπτομερώς στο Πρότυπο:Harvard citation text.

Notes


Αναφορές