Εικασία του Μπορσούκ

Από testwiki
Αναθεώρηση ως προς 17:20, 20 Φεβρουαρίου 2023 από τον imported>Fuxx (Checkwiki: Math που δεν έχει κλείσει σωστά)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
Παράδειγμα: ένα εξάγωνο κομμένο σε τρία κομμάτια μικρότερης διαμέτρου.

Το πρόβλημα του Μπορσούκ στη γεωμετρία, για ιστορικούς λόγους, ονομάζεται λανθασμένα ως εικασία του Μπορσούκ, είναι ερώτημα στη διακριτή γεωμετρία.

Το πρόβλημα

Το 1932 ο Κάρολ Μπορσούκ έδειξε ότι μια συνηθισμένη μπάλα 3 διαστάσεων στον Ευκλείδειο χώρο μπορεί εύκολα να χωρισθεί σε 4 στερεά, καθένα από τα οποία έχει μια μικρότερη διάμετρο από την μπάλα, και γενικά η d-διάστατη μπάλα μπορεί να καλυφθεί με d + 1 συμπαγή σύνολα διαμέτρων μικρότερες από την μπάλα. Ταυτόχρονα απέδειξε ότι τα υποσύνολα d δεν είναι αρκετά σε γενικές γραμμές. Η απόδειξη βασίζεται στο θεώρημα Μπορσούκ–Ούλαμ. Αυτό οδήγησε τον Μπορσούκ σε μια τόσο γενική ερώτηση:

Die folgende Frage bleibt offen: Lässt sich jede beschränkte Teilmenge E des Raumes (n+1) Mengen zerlegen, von denen jede einen kleineren Durchmesser als E hat;

Αυτό μπορεί να μεταφραστεί ως:

Το ακόλουθο ερώτημα παραμένει ανοιχτό: κάθε φραγμένο υποσύνολο Ε του χώρου είναι χωρισμένο σε σύνολα (n+1), καθένα από τα οποία έχει μια μικρότερη διάμετρο από τον Ε;

Το ερώτημα έχει θετική απάντηση στις ακόλουθες περιπτώσεις:

Το πρόβλημα τελικά λύθηκε το 1993 από τους Τζεφ Καχν και Γκιλ Καλάι, οι οποίοι έδειξαν ότι η γενική απάντηση στο ερώτημα του Μπορσούκ είναι όχι.[7] Η αναπαράστασή τους δείχνει ότι τα d + 1 κομμάτια που δεν επαρκούν για d = 1.325 και για κάθε d > 2.014.

Το αποτέλεσμα τους βελτιώθηκε το 2003 από τους Χίνριχς και Ρίχτερ, που αναπαράστησαν πεπερασμένα σύνολα για το d ≥ 298, το οποίο δεν μπορεί να χωριστεί σε d+11 τμήματα με μικρότερη διάμετρο.

Αφότου ο Αντρέι Β. Μπονταρένκο έδειξε το 2013 ότι η εικασία του Μπορσούκ είναι ψευδής για όλα τα d ≥ 65,[8] [9] το τρέχων καλύτερο όριο, λόγω του Τόμας Γιένριχ, είναι το 64.[10][11]

Εκτός από την εύρεση του ελάχιστου αριθμού δ τέτοιων διαστάσεων, εκτός από τον αριθμό τεμαχίων α(d)>d+1 οι μαθηματικοί ενδιαφέρονται να βρουν την γενική συμπεριφορά της συνάρτησης α(d). Οι Καχν και Καλάι δείχνουν ότι σε γενικές γραμμές (για το d αυτό είναι αρκετά μεγάλο) ένας χρειάζεται αριθμό τεμαχίων α(d)(1.2)d. Αναφέρουν επίσης το άνω όριο από τον Οντέντ Σραμ, ο οποίος έδειξε ότι για κάθε ε, αν το d είναι αρκετά μεγάλο, προκύπτει α(d)(3/2+ε)d.[12] Η σωστή τάξη μεγέθους του α(d) είναι ακόμα άγνωστη.[13] Ωστόσο, εικάζεται ότι υπάρχει μια σταθερά Πρότυπο:Nobr τέτοια ώστε να προκύπτει α(d)>cd για όλα τα Πρότυπο:Nobr.

Δείτε επίσης

Παραπομπές

Περαιτέρω ανάγνωση

Εξωτερικές συνδέσεις