Συμμετρία ως προς σημείο
Πρότυπο:Multiple image Στην γεωμετρία, ένα σημείο είναι συμμετρικό του σημείου ως προς το σημείο , αν το είναι το μέσο του ευθυγράμμου τμήματος . Το σημείο λέγεται το κέντρο συμμετρίας τους.[1]Πρότυπο:Rp[2]Πρότυπο:Rp
Δύο γεωμετρικά σχήματα και λέγονται συμμετρικά ως προς το σημείο , αν για κάθε σημείο του το συμμετρικό του ανήκει στο και αντίστροφα.
Κέντρο συμμετρίας
Κέντρο συμμετρίας ενός σχήματος ονομάζεται ένα σημείο για το οποίο το είναι συμμετρικό του εαυτού του ως προς το .
Παραδείγματα
- Το κέντρο ενός κύκλου είναι κέντρο συμμετρίας του.
- Το κέντρο μίας έλλειψης είναι κέντρο συμμετρίας της.
- Το σημείο τομής των διαγωνίων ενός ορθογωνίου είναι κέντρο συμμετρίας του.
- Το μέσο ενός ευθυγράμμου τμήματος είναι κέντρο συμμετρίας του.
- Το κέντρο του περιγεγραμμένου κύκλου ενός κανονικού εξαγώνου είναι κέντρο συμμετρίας του.
- Η γραφική παράσταση μίας περιττής συνάρτησης έχει ως κέντρο συμμετρίας την αρχή των αξόνων.
Ιδιότητες
- Δύο σχήματα συμμετρικά ως προς το κέντρο συμμετρίας είναι ίσα.
- Ένα σχήμα με δύο άξονες συμμετρίας κάθετους μεταξύ τους έχει και κέντρο συμμετρίας, την τομή αυτών των αξόνων.
Αναλυτική γεωμετρία
Έστω και δύο σημεία του επιπέδου. Το συμμετρικό του ως προς το δίνεται από την εξίσωση
- .
Δηλαδή, οι συντεταγμένες του σημείου δίνονται από
- .