2,2-διμεθυλοβουτάνιο

Από testwiki
Αναθεώρηση ως προς 18:17, 11 Αυγούστου 2024 από τον imported>MARKELLOS
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Πρότυπο:Πληροφορίες χημικής ένωσης

Το 2,2-διμεθυλοβουτάνιο ή νεοεξάνιο είναι ένα αλκάνιο, δηλαδή άκυκλος κορεσμένος υδρογονάνθρακας, με μοριακό τύπο C6H14 και σύντομο συντακτικό τύπο (CH3)3CCH2CH3. Αποτελεί συστατικό του αργού πετρελαίου και ιδιαίτερα της βενζίνης, μετά από πυρόλυση. Η ποιότητά του ως καύσιμο βενζινοκινητήρων είναι μέτρια, αφού έχει αριθμό οκτανίου 93,4. Ως καύσιμο ντίζελ είναι ακόμη χειρότερο, με αριθμό κετανίου 24,4.

Ονοματολογία

Η ονομασία «διμεθυλοβουτάνιο» προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το αρχικό πρόθεμα «διμεθυλο-» δηλώνει την παρουσία δύο (2) όμοιων διακλαδώσεων και τα δυο («δι-») ενός (1) ατόμου άνθρακα («-μεθυλο-») και συγκεκριμένα και οι δυο στο άτομο άνθρακα #2, όπως δηλώνουν οι αρχικοί αριθμοί θέσης («2,2-»), το τμήμα «βουτ-» δηλώνει την παρουσία τεσσάρων (4) ατόμων άνθρακα στην κύρια ανθρακική αλυσίδα της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-ιο» φανερώνει ότι δεν περιέχει χαρακτηριστικές ομάδες που διαθέτουν χαρακτηριστικές καταλήξεις.

Δομή

Το μόριό του αποτελείται από έξι (6) άτομα άνθρακα [τέσσερα (4) πρωτοταγή[1], ένα (1) δευτεροταγές[2] και ένα (1) τεταρτογενές[3]], που πλαισιώνονται δεκατέσσερα (14) άτομα υδρογόνου.

Δεσμοί[4]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
Κατανομή φορτίων
σε ουδέτερο μόριο
C#1,#4,#1',#1" -0,09
C#3 -0,06
C#2 0,00
H +0,03

Παραγωγή

Απομόνωση από φυσικές και βιομηχανικές πηγές

  1. Απομονώνεται από το πετρέλαιο.
  2. Απομονώνεται από μείγματα που προκύπτουν από πυρόλυση βαρύτερων προϊόντων διύλισης πετρελαίου ή πολυμερών υδρογονανθράκων.

Παρασκευή με αντιδράσεις σύνθεσης

1. Δομικά το 2,2-διμεθυλοβουτάνιο αποτελείται από δυο τμήματα: α) το τριτοταγές βουτύλιο [(CH3)3C-] και β) το αιθύλιο (CH3CH2-). Επομένως, η απλούστερη μέθοδος σύνθεσης καθαρού 2,2-διμεθυλοβουτάνιου είναι η αντίδραση αντίστοιχων ζευγών αλκυλαλογονιδίου-αλκυλολιθίου. Δηλαδή[5]:

(CH3)3CX+CH3CH2Li10oC|Et2O|(CH3)3CCH2CH3+LiX
ή
(CH3)3CLi+CH3CH2X(CH3)3CCH2CH3+LiX

όπου X οποιοδήποτε αλογόνο, αλλά συνήθως χρησιμοποιείται το βρώμιο (Br).

2. Αν επιχειρηθεί η ανάλογη αντίδραση Βουρτζ (Wurtz) το αποτέλεσμα είναι ένα μείγμα προϊόντων, λόγω των ακόλουθων δύο (2) ανταγωνιστικών αντιδράσεων[6]:

(CH3)3CX+CH3CH2X+2Na(CH3)3CCH2CH3+2NaX

2CH3CH2X+2NaCH3(CH2)2CH3+2NaX

  • Οι ρίζες των τριτοταγών βουτυλίων δεν ενώνονται μεταξύ τους λόγω στερεοχημικής παρεμπόδισης[7].
  • Η αντίδραση είναι συγκριτικά ασύμφορη σε σχέση με την προηγούμενη, αλλά τα προϊόντα αυτά διαχωρίζονται σχετικά εύκολα, με απόσταξη. Το βαρύτερο είναι το ζητούμενο (εδώ) νεοεξάνιο με σ.ζ.: 49,73 °C ενώ του βουτανίου με σ.ζ.: -0,5 °C.

Παραγωγή με αντιδράσεις χωρίς αλλαγή μήκους ανθρακικής αλυσίδας

Με αναγωγή αλογονούχων ενώσεων

1. Με «υδρογόνο εν τω γεννάσθαι», δηλαδή μέταλλο + οξύ[8]:

CH3CH2C(CH3)2CH2X+Zn+HX(CH3)3CCH2CH3+ZnX2
ή
CH3CHXC(CH3)3+Zn+HX(CH3)3CCH2CH3+ZnX2
ή
XCH2CH2C(CH3)3+Zn+HX(CH3)3CCH2CH3+ZnX2

2. Με LiAlH4 ή NaBH4[9]:

4CH3CH2C(CH3)2CH2X+LiAlH4(CH3)3CCH2CH3+AlX3+LiX
ή
4CH3CHXC(CH3)3+LiAlH4(CH3)3CCH2CH3+AlX3+LiX
ή
4XCH2CH2C(CH3)3+LiAlH4(CH3)3CCH2CH3+AlX3+LiX

3. Με αναγωγή αντίστοιχων ιωδαλκανίων με υδροϊώδιο[10]:

CH3CH2C(CH3)2CH2I+HI(CH3)3CCH2CH3+I2
ή
CH3CHIC(CH3)3+HI(CH3)3CCH2CH3+I2
ή
ICH2CH2C(CH3)3+HI(CH3)3CCH2CH3+I2

4. Με αναγωγή από σιλάνιο, παρουσία τριφθοριούχου βορίου παράγεται 2,2-διμεθυλοβουτάνιo[11]:

CH3CH2C(CH3)2CH2X+SiH4BF3(CH3)3CCH2CH3+SiH3X
ή
CH3CHXC(CH3)3+SiH4BF3(CH3)3CCH2CH3+SiH3X
ή
XCH2CH2C(CH3)3+SiH4BF3(CH3)3CCH2CH3+SiH3X

5. Αναγωγή από ένα αλκυλοκασσιτεράνιο. Π.χ.[12]:

CH3CH2C(CH3)2CH2X+RSnH3(CH3)3CCH2CH3+RSnH2X
ή
CH3CHXC(CH3)3+RSnH3(CH3)3CCH2CH3+RSnH2X
ή
XCH2CH2C(CH3)3+RSnH3(CH3)3CCH2CH3+RSnH2X

6. Με αναγωγή από μέταλλα και στη συνέχεια υδρόλυση των παραγόμενων οργανομεταλλικών ενώσεων:

1. Με χρήση Li[13]:

CH3CH2C(CH3)2CH2X+2Li10oC|Et2O|CH3CH2C(CH3)2CH2Li+LiX
CH3CH2C(CH3)2CH2Li+H2O(CH3)3CCH2CH3+LiOH
ή
CH3CHXC(CH3)3+2Li10oC|Et2O|CH3CHLiC(CH3)3+LiX
CH3CHLiC(CH3)3+H2O(CH3)3CCH2CH3+LiOH
ή
XCH2CH2C(CH3)3+2Li10oC|Et2O|LiCH2CH2C(CH3)3+LiX
LiCH2CH2C(CH3)3+H2O(CH3)3CCH2CH3+LiOH

2. Με χρήση Mg[14]:

CH3CH2C(CH3)2CH2X+Mg|Et2O|CH3CH2C(CH3)2CH2MgX
CH3CH2C(CH3)2CH2MgX+H2O(CH3)3CCH2CH3+Mg(OH)X

ή
CH3CHXC(CH3)3+Mg|Et2O|CH3CHMgXC(CH3)3
CH3CHMgXC(CH3)3+H2O(CH3)3CCH2CH3+Mg(OH)X

ή
XCH2CH2C(CH3)3+Mg|Et2O|XMgCH2CH2C(CH3)3
XMgCH2CH2C(CH3)3+H2O(CH3)3CCH2CH3+Mg(OH)X

Με υδρογόνωση ακόρεστων υδρογονανθράκων

1. Από 3,3-διμεθυλοβουτένιο[15]:

(CH3)3CCH=CH2+H2Ni(CH3)3CCH2CH3

2. Από διμεθυλοβουτίνιο[16]:

(CH3)3CCCH+2H2Ni(CH3)3CCH2CH3

Με αναγωγή οξυγονούχων ενώσεων

1. Με αναγωγή κατάλληλων αλδεϋδών - Αντίδραση Βολφ-Κίσνερ (Wolf-Kishner)[17]:

1. Από 2,2-διμεθυλοβουτανάλη:

CH3CH2CH(CH3)2CHO+NH2NH2KOH(CH3)3CCH2CH3+N2+H2O

2. Από 3,3-διμεθυλοβουτανάλη:

(CH3)3CCH2CHO+NH2NH2KOH(CH3)3CCH2CH3+N2+H2O

2. Με αναγωγή κατάλληλων κετονών - Αντίδραση Κλεμμενσέν (Clemmensen)[18]:

1. Από διμεθυλοβουτανόνη:

(CH3)3CCOCH3+2Zn+2HCl(CH3)3CCH2CH3+ZnCl2+ZnO

Με αναγωγή θειούχων ενώσεων

1. Με αναγωγή των κατάλληλων θειολών μπορεί να παραχθεί 2,2-διμεθυλοβουτάνιο. Π.χ. από την αναγωγή της 3,3-διμεθυλοβουτανοθειόλης (μέθοδος Raney)[19]:

(CH3)3CCH2CH2SH+H2Ni(CH3)3CCH2CH3+H2S

2. Με αναγωγή των κατάλληλων θειαιθέρων μπορεί να παραχθεί 2,2-διμεθυλοβουτάνιο. Π.χ. από την αναγωγή του δι(3,3-διμεθυλοβουτυλο)θειαιθέρα (μέθοδος Raney)[19]:

(CH3)3CCH2CH2SCH2CH2C(CH3)3+2H2Ni2(CH3)3CCH2CH3+H2S

Παρασκευή με αντιδράσεις αποσύνθεσης, δηλαδή με μείωση του μήκους της ανθρακικής αλυσίδας

CH3CH2C(CH3)2CH2COOH+NaOHCH3CH2C(CH3)2CH2COONa+H2O4(CH3)3CCH2CH3+NaHCO3(CH3)3CCH2CH3+NaOH+CO2
ή
CH3C(CH3)2CH2CH2COOH+NaOHCH3C(CH3)2CH2CH2COONa+H2O4(CH3)3CCH2CH3+NaHCO3(CH3)3CCH2CH3+NaOH+CO2
ή
(CH3)3CCH(CH3)COOH+NaOH(CH3)3CCH(CH3)COONa+H2O4(CH3)3CCH2CH3+NaHCO3(CH3)3CCH2CH3+NaOH+CO2

Φυσικές ιδιότητες και ισομερή

Το νεοεξάνιο είναι άχρωμο υγρό με ελαφριά χαρακτηριστική οσμή. Ανήκει στην οικογένεια των αλκανίων και μάλιστα είναι ένα από τα μέλη που διατηρεί την εμπειρική του ονομασία ανεξάρτητα από τους κανόνες ονοματολογίας.

Με βάση το χημικό τύπο του προκύπτει ότι η ένωση σχηματίζει τέσσερα (4) ισομερή και συγκεκριμένα τα ακόλουθα:

  1. Εξάνιο: CH3(CH2)4CH3
  2. 2-μεθυλοβουτάνιο (ισοεξάνιο):(CH3)2CHCH2CH2CH3
  3. 3-μεθυλοπεντάνιο: CH3CH2CH(CH3)CH2CH3
  4. 2,3-διμεθυλοβουτάνιο: (CH3)2CHCH(CH3)2
Συντακτικός τύποςΔομή Όνομα IUPAC(ελληνική μορφή)

Όνομα

ΜοριακόΒάρος Σημείο ζέσεως(°C, 1 atm) Βαθμός οκτανίου Βαθμός κετανίου
<figure-inline></figure-inline> κ-εξάνιο

εξάνιο

86,18 69 26 42
ισοεξάνιο 2-μεθυλοπεντάνιο

ισοεξάνιο

58,12 60 73,5 23
3-μεθυλοπεντάνιο 3-μεθυλοπεντάνιο 58,12 64 74,3 30
νεοεξάνιο 2,2-διμεθυλοβουτάνιο

νεοεξάνιο

58,12 49,73 93,4 24,4
<figure-inline><img resource="./Αρχείο:2,3-diméthylbutane.png" src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/2%2C3-dim%C3%A9thylbutane.png/100px-2%2C3-dim%C3%A9thylbutane.png" data-file-width="124" data-file-height="86" data-file-type="bitmap" srcset="//upload.wikimedia.org/wikipedia/commons/0/08/2%2C3-dim%C3%A9thylbutane.png 2x, //upload.wikimedia.org/wikipedia/commons/0/08/2%2C3-dim%C3%A9thylbutane.png 1.5x" width="100" height="69" /></figure-inline> 2,3-διμεθυλοβουτάνιο 58,12 57,9 94,3

Χημικές ιδιότητες

Οξείδωση

1. Τέλεια καύση: Όπως όλα τα αλκάνια, το νεοεξάνιο με περίσσεια οξυγόνου καίγεται προς διοξείδιο του άνθρακα και νερό[21]:

2C6H14+19O212CO2+14H2+8.343kJ

  • Αν και η αντίδραση είναι έντονα εξώθερμη δεν συμβαίνει σε μέτριες θερμοκρασίες, γιατί για την έναρξή της πρέπει να υπερπηδηθεί πρώτα το εμπόδιο της διάσπασης των δεσμών C-C[22], των δεσμών C-H[23] και των δεσμών (Ο=Ο)[24] του O2:

2. Παραγωγή υδραερίου:

C6H14+6H2O7001100oCNi6CO+14H2

3. Καταλυτική οξείδωση κυρίως προς διμεθυλοβουτανόνη:

(CH3)3CCH2CH3+O2Cu(CH3)3CCOCH3+H2O

Αλογόνωση [25]

(CH3)3CCH2CH3+X2UVaXCH2C(CH3)2CH2CH3+b(CH3)3CCHXCH3+c(CH3)3CCH2CH2X+HX

  • Δραστικότητα των X2: F2 > Cl2 > Br2 > Ι2.
  • όπου 0<a,b,c<1, a+b+c = 1, διαφέρει ανάλογα με το αλογόνο:
    • Τα F και Cl είναι πιο δραστικά και λιγότερο εκλεκτικά. Το φθόριο είναι επικίνδυνα δραστικό και γι' αυτό η χρήση του γενικά αποφεύγεται. Αν χρησιμοποιηθεί συνήθως καταλήγει σε γενική ανάφλεξη που οδηγεί σε μείγματα φθορανθράκων (όπως ο τετραφθοράνθρακας, CF4) και όχι απλώς αντικατάσταση ατόμων υδρογόνου από άτομα φθορίου. Έτσι, αν είναι επιθυμητή η παραγωγή μονοφθοροπαραγώγων, προτιμάται πρώτα χλωρίωση ή βρωμίωση και στη συνέχεια υποκατάσταση του άλλου αλογόνου από φθόριο, συνήθως με χρήση αλάτων όπως ο φθοριούχος υφυδράργυρος (Hg2F2) ή ο φθοριούχος άργυρος (AgF). Για το χλώριο, η αναλογία των χλωριδίων εξαρτάται σημαντικά από τη στατιστική αναλογία των προς αντικατάσταση ατόμων H:
Δηλαδή το μείγμα που προκύπτει είναι: 2,2-διμεθυλοχλωροβουτάνιο [9/(9+7,6+6) =] 39,8%, 3,3-διμεθυλο-2-χλωροβουτάνιο = [7,6/(9+7,6+6) =] 33,6%, 3,3-διμεθυλο-1-χλωροβουτάνιο [6/(9+7,6+6)=] 26,5%.
Δηλαδή το μείγμα που προκύπτει είναι: βρωμο-2,2-διμεθυλοβουτάνιο [9/(9+164+6)=]5%, 2-βρωμο-3,3-διμεθυλοβουτάνιο [164/(9+164+6)=] 91,6%, 1-βρωμο-3,3-διμεθυλοβουτάνιο [6/(9+164+6)=] 3,3%.
Ανάλυση του μηχανισμού της χλωρίωσης του CH3CH2C(CH3)3:
1. Έναρξη: Παράγονται ελεύθερες ρίζες.

Cl2UV2Cl239kJ

2. Διάδοση: Καταναλώνονται οι παλιές ελεύθερες ρίζες, σχηματίζοντας νέες.

CH3CH2C(CH3)3+Cl0,4CH3CH2C(CH3)2CH2+0,34CH3CHC(CH3)3+0,27CH2CH2C(CH3)3+HCl+14kJ [26]
CH3CH2C(CH3)2CH2+Cl2CH3CH2C(CH3)2CH2Cl+Cl+100kJ
CH3CHC(CH3)3+Cl2CH3CH(Cl)C(CH3)3+Cl+100kJ
CH2CH2C(CH3)3+Cl2ClCH2CH2C(CH3)3+Cl+100kJ

3. Τερματισμός: Καταναλώνονται μεταξύ τους οι ελεύθερες ρίζες, κατά τη στατιστικά σπάνια περίπτωση της συνάντησής τους.

2ClCl2+239kJ
CH3CH2C(CH3)2CH2+ClCH3CH2C(CH3)2CH2Cl+339kJ
CH3CHC(CH3)3+ClCH3CH(Cl)C(CH3)3+339kJ
CH2CH2C(CH3)3+ClClCH2CH2C(CH3)3+339kJ
2CH3CH2C(CH3)2CH2CH3CH2C(CH3)2CH2CH2C(CH3)2CH2CH3+347kJ
2CH3CHC(CH3)3(CH3)3CCH(CH3)CH(CH3)C(CH3)3+347kJ
2CH2CH2C(CH3)3(CH3)3CCH2CH2CH2CH2C(CH3)3+347kJ

  • Είναι όμως πρακτικά δύσκολο να σταματήσει η αντίδραση στην παραγωγή μονοααλογονιδίων.
    • Αν χρησιμοποιηθούν ισομοριακές ποσότητες CH3CH2C(CH3)3 και Χ2 θα παραχθεί μείγμα όλων των αλογονοπαραγώγων του CH3CH2C(CH3)3.
    • Αν όμως χρησιμοποιηθεί περίσσεια CH3CH2C(CH3)3, τότε η απόδοση των μονοπαραγώγων αυξάνεται πολύ, λόγω της αύξησης της στατιστική πιθανότητας συνάντησης CH3CH2C(CH3)3 με X. σε σχέση με την πιθανότητα συνάντησης μονοπαραγώγου και X., που μπορεί να οδηγήσει στην παραγωγή των υπόλοιπων X-παραγώγων.

Παρεμβολή καρβενίων

CH3CH2C(CH3)3+CH3Cl+KOH914CH3CH2C(CH3)2CH2CH3+314CH3CH2CH2C(CH3)3+17(CH3)2CHC(CH3)3+KCl+H2O

  • Η αντίδραση είναι ελάχιστα εκλεκτική και αυτό σημαίνει ότι κατά προσέγγιση έχουμε;
  1. Παρεμβολή στους τρεις (3) δεσμούς C#4H2-Η : 3
  2. Παρεμβολή στους δύο (2) δεσμούς CH-H: 2
  3. Παρεμβολή στους εννέα (9) δεσμούς C#1,#1',#1"H2-H: 9: 9

Προκύπτει επομένως μείγμα 3,3-διμεθυλοπεντάνιου (~64%), 2,2-διμεθυλοπεντάνιου (~21%) και τριμεθυλοβουτάνιου (-14%).

Νίτρωση

  • Αντιδρά με ατμούς HNO3 στην αέρια φάση[28]:

CH3CH2C(CH3)3+HNO3aCH3CH2C(CH3)2CH2NO2+b(CH3)3C(CH2)CH2NO2+cCH3CH(NO2)C(CH3)3+H2O

όπου 0<a,b,c<1, a + b + c = 1.

Καταλυτική ισομερείωση

Τo 2,2-διμεθυλοβουτάνιο μπορεί να υποστεί καταλυτική ισομερείωση προς εξάνιο, 2-μεθυλοπεντάνιο, 3-μεθυλοπεντάνιο και 2,3-διμεθυλοβουτάνιο:

CH3CH2CH2CH2CH2CH3AlCl3CH3CH2CH2CH(CH3)2AlCl3CH3CH2CH(CH3)CH2CH3AlCl3(CH3)3CCH2CH3AlCl3CH3CH(CH3)CH(CH3)CH2CH3

Χρήσεις

  • Είναι συστατικό της βενζίνης, που χρησιμοποιείται ως καύσιμο και διαλυτικό.
  • Πρώτη ύλη συνθέσεων, μέσω των αλογονοπαραγώγων του.

Αναφορές και σημειώσεις

  1. Άτομο C ενωμένο με ένα (1) άλλο άτομο C.
  2. Άτομο C ενωμένο με δύο (2) άλλα άτομα C.
  3. Άτομο C ενωμένο με τέσσερα (4) άλλα άτομα C.
  4. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.5
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.2β, R = CH3CH2, R' = (CH3)3CH
  7. «Στερεοχημική παρεμπόδιση» ονομάζεται το φαινόμενο της μη πραγματοποίησης αντίδρασης για στερεοχημικούς λόγους, δηλαδή όταν σχετικά ογκώδεις μη ενεργές ομάδες εμποδίζουν τα ενεργά κέντρα να πλησιάσουν αρκετά μεταξύ τους ώστε να πραγματοποιηθεί η αντίδραση
  8. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.1β., με R = (CH3)3CCH2CH2 ή (CH3)3CCHCH3 ή CH2C(CH3)2CH2CH3
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, §6.2.1α., με R = (CH3)3CCH2CH2 ή (CH3)3CCHCH3 ή CH2C(CH3)2CH2CH3
  10. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ.14, §1.1
  11. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  12. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, Σελ. 42, §4.3.
  13. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ.80-82, §5.1-5.2
  14. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.4α., με R = (CH3)3CCH2CH2 ή (CH3)3CCHCH3 ή CH2C(CH3)2CH2CH3
  15. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.5.
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 158, §6.9.4α.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.7.6β.
  18. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.7.6α, R = CH3, R' = (CH3)3C
  19. 19,0 19,1 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.269, §11.6B7.
  20. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.3α., με R = CH3CH2(CH3)CH2 ή CH3(CH3)CH2CH2 ή (CH3)3CCH(CH3)
  21. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.1, v = 6 και μετατροπή μονάδας ενέργειας σε kJ.
  22. ΔHC-C= +347 kJ/mol
  23. ΔHC-H = +415 kJ/mol
  24. ΔHO-O=+146 kJ/mol
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.7.1β., με R = (CH3)3CCH2CH2 ή CH2C(CH3)2H2CH3 ή (CH3)3CCHCH3
  26. καθοριστικό ταχύτητας
  27. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3, R = (CH3)3CCH2CH2 ή CH2C(CH3)2H2CH3 ή (CH3)3CCHCH3.
  28. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244 , §10.3.2, R = (CH3)3CCH2CH2 ή CH2C(CH3)2H2CH3 ή (CH3)3CCHCH3

Πηγές

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982

Πρότυπο:Υδρογονάνθρακες