Μαθηματική αναγωγή

Από testwiki
Αναθεώρηση ως προς 21:32, 18 Νοεμβρίου 2024 από τον imported>Qmmfqjopz
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Πρότυπο:Χωρίς παραπομπές

Η μαθηματική αναγωγή ονομάζεται η μετατροπή μιας έκφρασης σε ταυτόσιμη αλλά απλούστερη μορφή. Χρησιμοποιείται σε όλους σχεδόν τους κλάδους των μαθηματικών. Στα κλάσματα, (μαθηματική) αναγωγή ονομάζεται και «απλοποίηση» και ονομάζεται η επανεγγραφή των όρων του κλάσματος με απλούστερους όρους. Στα ριζικά (μαθηματική) αναγωγή ονομάζεται η επανεγγραφή του περιεχομένου των ριζικών με απλούστερο τρόπο.

Στη Γραμμική Άλγεβρα η (μαθηματική) αναγωγή εφαρμόζει κανόνες για να μετατρέψει την εξίσωση, το σύστημα εξισώσεων ή τους πίνακες (μήτρες) σε ισοδύναμη αλλά απλούστερη μορφή.

Τέλος η (μαθηματική) αναγωγή αναφέρεται και στην τεχνική της ολοκλήρωσης κατά μέλη για τη διευκόλυνση του υπολογισμού τους με την επανεγγραφή τους ως έκφρασης που περιέχει απλούστερα (στον υπολογισμό) ολοκληρώματα.

Στατική Αναγωγή ή Αναγωγή Guyan

Στη δυναμική ανάλυση. η «στατική αναγωγή» ή «αναγωγή Guyan» αναφέρεται στη (μαθηματική) αναγωγή των βαθμών ελευθερίας. Η στατική αναγωγή μπορεί επίσης να εφαρμοστεί για την απλοποίηση ενός προβλήματος γραμμικής άλγεβρας. Π.χ. έστω το ακόλουθο σύστημα γραμμικών εξισώσεων:

α11x1+α12x2=β1
α21x1+α22x2=β2

  • όπου α,β οι γνωστοί και Χ οι άγνωστοι όροι, που τοποθετούνται σε πίνακες.

Η παραπάνω μορφή γράφεται ισοδύναμα και σε μορφή εξίσωσης πινάκων:

[α11α12α21α22][x1x2]=[β1β2]

Αν τώρα β2=0 και χρειαζόμαστε μόνο τον όρο x1, η εξίσωση των πινάκων μπορεί να αναχθεί στην ακόλουθη εξίσωση:

α11αν.x1=β1

Η αναγωγή στον όρο α11αν. φαίνεται πώς γίνεται αν ξαναγράψουμε το αρχικό σύστημα εξισώσεων στην ακόλουθη μορφή, εφαρμόζοντας την προϋπόθεση β2=0:

α11x1+α12x2=β1
α21x1+α22x2=0

Είναι φανερό τώρα ότι για τη δεύτερη (2η) εξίσωση ισχύει:

α21x1+α22x2=0α21x1=α22x2x2=α21α22x1

Αντικαθιστώντας τώρα το x2 στην πρώτη εξίσωση, αυτή γίνεαι:

α11x1α12α21α22x1=β1(α11α12α21α22)x1=β1

Τέλος θέτοντας α11αν.=α11α12α21α22 διαμορφώθηκε η «αναγμένη» εξίσωση:

α11αν.x1=β1

  • Παρόμοια αναγωγή μπορεί να γίνει και αν κάποιο από τα αij είναι 0, ενώ φυσικά μπορεί ομοίως να αναχθεί το α21 αν β1=0.

Πρότυπο:Μαθηματικά-επέκταση