Αρχείο:Erays.svg

Από testwiki
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
Πρωτότυπο αρχείο (Αρχείο SVG, ονομαστικό μέγεθος 1.000 × 500 εικονοστοιχεία, μέγεθος αρχείου: 612 KB)

Αυτό το αρχείο είναι από το Wikimedia Commons και ενδέχεται να χρησιμοποιείται από άλλα εγχειρήματα. Η περιγραφή στη σελίδα περιγραφής του εκεί, εμφανίζεται παρακάτω.

Σύνοψη

Περιγραφή
English: Polar coordinate system and mapping from the complement (exterior) of the closed unit disk to the complement of the filled Julia set for .
বাংলা: জটিল গতিবিদ্যায় একক বৃত্ত
Français : Uniformisation du complémentaire du segment .
Bahasa Indonesia: Lingkaran satuan dalam dinamika kompleks.
日本語: リーマン写像による単位円の像としての単連結ジュリア集合
Polski: Układ współrzędnych biegunowych oraz funkcja odwzorowująca dopełnienie dysku jednostkowego na dopełnienie zbioru Julia.
Ημερομηνία 4 Νοεμβρίου 2008 (original upload date)
Πηγή Own work based on: Erays.png by Adam Majewski
Δημιουργός Vectorization: Alhadis
άλλες εκδόσεις
Source code
InfoField
Created using Maxima.
R_max: 5;
R_min: 1;
dR: R_max - R_min;
psi(w) := w+1/w;
NmbrOfRays: 10;
iMax: 100; /* number of points to draw */
GiveCirclePoint(t) := R*%e^(%i*t*2*%pi); /* gives point of unit circle for angle t in turns */
GiveWRayPoint(R) := R*%e^(%i*tRay*2*%pi); /* gives point of external ray for radius R and angle tRay in turns */ 

/* f_0 plane = W-plane */
/* Unit circle */
R: 1;
circle_angles: makelist(i/(10*iMax), i, 0, 10*iMax-1); /* more angles = more points */
CirclePoints: map(GiveCirclePoint, circle_angles);

/* External circles */
circle_radii: makelist(R_min+i, i, 1, dR);
WCirclesPoints: [];
for R in circle_radii do 
	WCirclesPoints: append(WCirclesPoints, map(GiveCirclePoint, circle_angles));

/* External W rays */
ray_radii: makelist(R_min+dR*i/iMax, i, 0, iMax);
ray_angles: makelist(i/NmbrOfRays, i, 0, NmbrOfRays-1);
WRaysPoints: [];
for tRay in ray_angles do 
	WRaysPoints: append(WRaysPoints, map(GiveWRayPoint, ray_radii));


/* f_c plane = Z plane = dynamic plane */
/* external Z rays */
ZRaysPoints: map(psi, WRaysPoints);

/* Julia set points */
JuliaPoints: map(psi, CirclePoints);
Equipotentials: map(psi, WCirclesPoints);


/* Mario Rodríguez Riotorto (http://www.telefonica.net/web2/biomates/maxima/gpdraw/index.html) */
load(draw);
draw(
	file_name = "erays",
	pic_width = 1000, 
	pic_height = 500,
	terminal = 'svg,
	columns = 2,
	gr2d(
		title = " unit circle with external rays & circles ",
		point_type = filled_circle,
		points_joined = true,
		point_size = 0.34,
		color = red,
		points(map(realpart, CirclePoints),map(imagpart, CirclePoints)),
		points_joined = false,
		color = black,
		points(map(realpart, WRaysPoints), map(imagpart, WRaysPoints)),
		points(map(realpart, WCirclesPoints), map(imagpart, WCirclesPoints))
	),
	gr2d(
		title = "Image under psi(w):=w+1/w; ",
		points_joined = true,
		point_type = filled_circle,
		point_size = 0.34,
		color = blue,
		points(map(realpart, JuliaPoints),map(imagpart, JuliaPoints)),
		points_joined = false,
		color = black,
		points(map(realpart, ZRaysPoints),map(imagpart, ZRaysPoints)),
		points(map(realpart, Equipotentials),map(imagpart, Equipotentials))
	) 
);

SVG ανάπτυξη
InfoField
 Ο πηγαίος κώδικας αυτού του SVG είναι έγκυρος.
  This vector image was created with Adobe Illustrator, and then manually edited.
This αρχείο is saved in human-editable plain text format. Any editing of the image or creation of any derivative work should be performed using a text editor. Please do not upload edits saved or exported with Inkscape or similar vector graphics editors, as well as with automated tools such as SVG Translate.
This file supersedes the file Erays.png. It is recommended to use this file rather than the other one.

Deutsch  English  español  فارسی  français  magyar  Bahasa Indonesia  italiano  日本語  한국어  македонски  മലയാളം  Nederlands  polski  prūsiskan  português do Brasil  русский  slovenščina  svenska  中文(简体)  中文(繁體)  +/−

minor quality

Long description

Here are two diagrams:

  • on the left is dynamical plane for
  • on the right is dynamical plane for

On left diagram one can see:

Right diagram is image of left diagram under function (the Riemann map) which maps the complement (exterior) of the closed unit disk to the complement of the filled Julia set

For :

It is:

  • a simplest case for analysis,
  • only one case when formula for computing is known (explicit Riemann mapping).

maps [1]:

Αδειοδότηση

w:el:Creative Commons
αναφορά προέλευσης παρόμοια διανομή
Απόδοση:
Είστε ελεύθερος:
  • να μοιραστείτε – να αντιγράψετε, διανέμετε και να μεταδώσετε το έργο
  • να διασκευάσετε – να τροποποιήσετε το έργο
Υπό τις ακόλουθες προϋποθέσεις:
  • αναφορά προέλευσης – Θα πρέπει να κάνετε κατάλληλη αναφορά, να παρέχετε σύνδεσμο για την άδεια και να επισημάνετε εάν έγιναν αλλαγές. Μπορείτε να το κάνετε με οποιοδήποτε αιτιολογήσιμο λόγο, χωρίς όμως να εννοείται με οποιονδήποτε τρόπο ότι εγκρίνουν εσάς ή τη χρήση του έργου από εσάς.
  • παρόμοια διανομή – Εάν αλλάξετε, τροποποιήσετε ή δημιουργήσετε πάνω στο έργο αυτό, μπορείτε να διανείμετε αυτό που θα προκύψει μόνο υπό τους όρους της ίδιας ή συμβατής άδειας με το πρωτότυπο.
  1. Peitgen, Heinz-Otto; Richter Peter (1986) The Beauty of Fractals, Χαϊδελβέργη: Springer-Verlag ISBN: 0-387-15851-0.

Λεζάντες

Προσθέστε εξήγηση μιας γραμμής για το τι αντιπροσωπεύει αυτό το αρχείο

Τα Αντικείμενα που απεικονίζονται σε αυτό το αρχείο

απεικονίζει

Ιστορικό αρχείου

Πατήστε σε μια ημερομηνία/ώρα για να δείτε το αρχείο όπως εμφανιζόταν εκείνη την χρονική στιγμή.

Ημερομηνία/ΏραΜικρογραφίαΔιαστάσειςΧρήστηςΣχόλιο
τρέχον21:35, 16 Φεβρουαρίου 2023Μικρογραφία για την έκδοση της 21:35, 16 Φεβρουαρίου 20231.000 × 500 (612 KB)wikimediacommons>AlhadisRecreated SVG using librsvg-compatible markup.

Η ακόλουθη σελίδα χρησιμοποιεί προς αυτό το αρχείο: