Αρχείο:Amoeba4 400.png
Από testwiki
Μετάβαση στην πλοήγηση
Πήδηση στην αναζήτηση
Μέγεθος αυτής της προεπισκόπησης: 593 × 600 εικονοστοιχεία . Άλλες αναλύσεις: 237 × 240 εικονοστοιχεία | 475 × 480 εικονοστοιχεία | 760 × 768 εικονοστοιχεία | 1.013 × 1.024 εικονοστοιχεία | 1.896 × 1.917 εικονοστοιχεία.
Πρωτότυπο αρχείο (1.896 × 1.917 εικονοστοιχεία, μέγεθος αρχείου: 263 KB, τύπος MIME: image/png)
Αυτό το αρχείο είναι από το Wikimedia Commons και ενδέχεται να χρησιμοποιείται από άλλα εγχειρήματα. Η περιγραφή στη σελίδα περιγραφής του εκεί, εμφανίζεται παρακάτω.
Σύνοψη
Αδειοδότηση
| Public domainPublic domainfalsefalse |
| Εγώ, ο κάτοχος των πνευματικών δικαιωμάτων αυτού του έργου, δημοσιεύω αυτό το έργο ως κοινό κτήμα. Αυτό ισχύει σε παγκόσμια κλίμακα. Σε ορισμένες χώρες αυτό μπορεί να μην είναι νομικά εφικτό. Αν ναι: Παραχωρώ σε οποιονδήποτε το δικαίωμα να χρησιμοποιήσει αυτό το έργο "για οποιονδήποτε σκοπό", χωρίς κανέναν όρο, εκτός και αν τέτοιοι όροι τίθενται από την νομοθεσία |
Source code

This media was created with MATLAB (περιβάλλον υπολογιστικής αριθμητικής)
Here is a listing of the source used to create this file.
Here is a listing of the source used to create this file.
% find the amoeba of the polynomial
% p(z, w)=50 z^3+83 z^2 w+24 z w^2+w^3+392 z^2+414 z w+50 w^2-28 z +59 w-100
% See http://en.wikipedia.org/wiki/Amoeba_(mathematics).
function main()
figure(3); clf; hold on;
axis equal; axis off;
axis([-4.5, 5, -3.5, 6]);
fs = 20; set(gca, 'fontsize', fs);
ii=sqrt(-1);
tiny = 100*eps;
Ntheta = 500; % for Ntheta=500 the code will run very slowly, but will get a good resolution
NR= Ntheta;
% R is a vector of numbers, exponentiall distributed
A=-5; B=5;
LogR = linspace(A, B, NR);
R = exp(LogR);
% a vector of angles, uniformly distributed
Theta = linspace(0, 2*pi, Ntheta);
degree=3;
Rho = zeros(1, degree*Ntheta); % Rho will store the absolute values of the roots
One = ones (1, degree*Ntheta);
% play around with these numbers to get various amoebas
b1=1; c1=1;
b2=3; c2=15;
b3=20; c3=b3/5;
d=-80; e=d/4;
f=0; g=0;
h=20; k=30; l=60;
m=0; n = -10; p=0; q=0;
% Draw the 2D figure as union of horizontal slices and then union of vertical slices.
% The resulting picture achieves much higher resolution than any of the two individually.
for type=1:2
for count_r = 1:NR
count_r
r = R(count_r);
for count_t =1:Ntheta
theta = Theta (count_t);
if type == 1
z=r*exp(ii*theta);
% write p(z, w) as a polynomial in w with coefficients polynomials in z
% first comes the coeff of the highest power of w, then of the lower one, etc.
Coeffs=[1+m,
c1+c2+c3+b1*z+b2*z+b3*z+k+p*z,
e+g+(c1+b1*z)*(c2+b2*z)+(c1+c2+b1*z+b2*z)*(c3+b3*z)+l*z+q*z^2,
d+f*z+(c3+b3*z)*(e+(c1+b1*z)*(c2+b2*z))+h*z^2+n*z^3];
else
% write p(z, w) as a polynomial in z with coefficients polynomials in w
w=r*exp(ii*theta);
Coeffs=[b1*b2*b3+n,
h+b1*b3*(c2+w)+b2*(b3*(c1+w)+b1*(c3+w))+q*w,
(b2*c1+b1*c2)*c3+b3*(c1*c2+e)+f+(b1*c2+b3*(c1+c2)+b1*c3+b2*(c1+c3)+l)*w+...
(b1+b2+b3)*w^2+p*w^2,
d+c3*(c1*c2+e)+(c1*c2+(c1+c2)*c3+e+g)*w+(c1+c2+c3+k)*w^2+w^3+m*w^3];
end
% find the roots of the polynomial with given coefficients
Roots = roots(Coeffs);
% log |root|. Use max() to avoid log 0.
Rho((degree*(count_t-1)+1):(degree*count_t))= log (max(abs(Roots), tiny));
end
% plot the roots horizontally or vertically
if type == 1
plot(LogR(count_r)*One, Rho, 'b.');
else
plot(Rho, LogR(count_r)*One, 'b.');
end
end
end
saveas(gcf, sprintf('amoeba4_%d.eps', NR), 'psc2');
Λεζάντες
Προσθέστε εξήγηση μιας γραμμής για το τι αντιπροσωπεύει αυτό το αρχείο
Τα Αντικείμενα που απεικονίζονται σε αυτό το αρχείο
απεικονίζει
image/png
checksum Αγγλικά
58973343fec280e75a3e896a225f156f45a7741c
data size Αγγλικά
269.569 Byte
1.917 εικονοστοιχείο
1.896 εικονοστοιχείο
Ιστορικό αρχείου
Πατήστε σε μια ημερομηνία/ώρα για να δείτε το αρχείο όπως εμφανιζόταν εκείνη την χρονική στιγμή.
| Ημερομηνία/Ώρα | Μικρογραφία | Διαστάσεις | Χρήστης | Σχόλιο | |
|---|---|---|---|---|---|
| τρέχον | 04:59, 9 Μαρτίου 2007 | 1.896 × 1.917 (263 KB) | wikimediacommons>Oleg Alexandrov | Made by myself with Matlab. {{PD-self}} |
Χρήση αρχείου
Δεν υπάρχουν σελίδες που χρησιμοποιούν αυτό το αρχείο.
Ανακτήθηκε από «https://el.wiki.beta.math.wmflabs.org/wiki/Αρχείο:Amoeba4_400.png»