Χλωραιθανάλη

Από testwiki
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Πρότυπο:Πληροφορίες χημικής ένωσης

Η χλωραιθανάλη ή χλωρακεταλδεΰδη (Πρότυπο:Lang-en) είναι οργανική Χημική ένωση, που περιέχει άνθρακα, Οξυγόνο, υδρογόνο και χλώριο με μοριακό τύπο C2H3OCl, αν και παριστάνεται συχνά και με τον λίγο αναλυτικότερο τύπο ClCH2CHO (ή την ισοδύναμη μορφή CH2ClCHO). Είναι μια από τις απλούστερες αλαλδεΰδη, δηλαδή αλογονούχος αλδεΰδη. Όπως και κάποιες συγγενικές ενώσεις, η χλωραιθανάλη είναι ένα ισχυρό ηλεκτρονιόφιλο (ακυλιωτικό) αντιδραστήριο και γι' αυτό ένα δυνάμει επικίνδυνο ακυλιωτικό μέσο. Η ένωση δεν βρίσκεται κανονικά στην άνυδρη μορφή της, αλλά μάλλον στην ενυδατωμένη της ακεταλική μορφή, δηλαδή ως 2-χλωρο-1,1-αιθανοδιόλη, ClCH2CH(OH)2. Η χλωραιθανάλη είναι μια χρήσιμη πρόδρομη ένωση για τη σύνθεση π.χ. 2-αμινοθειαζόλιου ή και πολλών άλλων φαρμακευτικών προϊόντων. Μια άλλη χρήση της είναι να διευκολύνει την αφαίρεση του φλοιού από κορμούς δέντρων.

Ισομέρεια

Με βάση τον μοριακό της τύπο, έχει τα ακόλουθα πέντε (5) ισομερή θέσης:

  1. Αιθανοϋλοχλωρίδιο, ένα ακυλαλογονίδιο, με σύντομο συντακτικό τύπο CH3COCl.
  2. Χλωροξυαιθένιο, ένας εστέρας του υποχλωριώδους οξέος (HOCl), με σύντομο συντακτικό τύπο CH2=CHOCl.
  3. 1-χλωραιθενόλη, μια ασταθής αλενόλη, με σύντομο συντακτικό τύπο CH2=C(Cl)OH, έλασσον ταυτομερές του αιθανοϋλοχλωρίδιου.
  4. 2-χλωραιθενόλη, σε δύο (2) γεωμετρικά ισομερή, μια ασταθής αλενόλη, με σύντομο συντακτικό τύπο ClCH=CHOH, έλασσον ταυτομερές της χλωραιθανάλης.
  5. Χλωροξιράνιο, ένα αλογονοπαράγωγο του οξιρανίου.

Παραγωγή

Από βινυλοχλωρίδιο

Με χλωρίωση ένυδρου βινυλοχλωρίδιου, παράγεται τελικά χλωραιθανάλη:

CH2=CHCl+Cl2+H2OClCH2CHO+HCl

Με καταλυτική οξείδωση (2-χλωραιθυλο)βενζόλιου

Με καταλυτική οξείδωση (2-χλωραιθυλο)βενζόλιου (PhCH2CH2Cl) παράγεται φαινόλη (PhOH) και χλωραιθανάλη:

PhCH2CH2Cl+O2PhOH+ClCH2CHO

Με μερική οξείδωση 2-χλωραιθανόλης

Με μερική οξείδωση 2-χλωραιθανόλης, με σχετικά ήπια οξειδωτικά μέσα, όπως το τριοξείδιο του χρωμίου[1]:

3ClCH2CH2OH+2CrO33ClCH2CHO+Cr2O3+3H2O

Με οζονόλυση 1,4-διχλωρο-2-βουτένιου

Με οζονόλυση 1,4-διχλωρο-2-βουτενίου παράγεται τελικά χλωραιθανάλη[2]:

ClCH2CH=CHCH2Cl+23O32ClCH2CHO

Με επίδραση υπεριωδικού οξέως σε 1,4-διχλωρο-2,3-βουτανοδιόλη

Με επίδραση υπεριωδικού οξέος σε 1,4-διχλωρο-2,3-βουτανοδιόλη παράγεται χλωραιθανάλη[3]:

ClCH2CH(OH)CH(OH)CH2Cl+HIO42ClCH2CHO+HIO3+H2O

Χημική συμπεριφορά και παράγωγα

Η χλωραιθανόλη είναι μια διλειτουργική ένωση, αφού περιέχει δυο λειτουργικές ομάδες, το χλώριο και την αλδεϋδομάδα. Το γεγονός αυτό την καθιστά μια ευέλικτη πρόδρομη ένωση, για πολλές ετεροκυκλικές ενώσεις και όχι μόνο. Για παράδειγμα, συμπυκνώνεται με παράγωγα της θειουρίας, για να δώσει αμινοθειαζόλες. Η αντίδραση αυτή ήταν κάποτε σημαντική, ως πρόδρομη για την παραγωγή σουλφαθειαζόλης, ενός από τα πρώτα σουλφοφάρμακα[4].

Αντιδράσεις καρβονυλίου

Ταυτομέρεια με 2-χλωραιθενόλη

Η χλωραιθανάλη βρίσκεται πάντα σε χημική ισορροπία με την ταυτομερή της 2-χλωραιθενόλη. Αυτή η χημική ισορροπία, μπορεί να καταλυθεί προς την επιθυμητή κατεύθυνση με παρουσία οξέων ή βάσεων[5]:

ClCH2CHOClCH=CHOH

  • Το #2 άτομο άνθρακα συνδέεται με χλώριο, που είναι λιγότερο ηλεκτραρνητικό από το οξυγόνο, με το οποίο συνδέεται το #1. Έτσι, σε αντιδράσεις προσθήκης ενώσεων τύπου δ+ABδ- σε αυτήν, το αποτέλεσμα θα είναι CH(Cl)ACH(B)OH.

Αναγωγή προς 2-χλωραιθανόλη

Με καταλυτική υδρογόνωση, μπορεί να αναχθεί η 2-χλωραιθανάλη προς 2-χλωραιθανόλη[6]:

ClCH2CHO+H2Niη´Pdη´PtClCH2CH2OH

Οξείδωση προς χλωραιθανικό οξύ

Μπορεί να οξειδωθεί προς χλωραιθανικό οξύ[7];

1. Με υπερμαγγανικό κάλιο:

3ClCH2CHO+2KMnO4+H2SO43ClCH2COOH+2MnO2+K2SO4+H2O

2. Με τριοξείδιο του χρωμίου:

3ClCH2CHO+2CrO33ClCH2COOH+Cr2O3

3. Με οξυγόνο:

ClCH2CHO+O2ClCH2CO3H+ClCH2CHO2ClCH2COOH

4. Με αντιδραστήριο Tollens (αμμωνιακό διάλυμα νιτρικού αργύρου):

ClCH2CHO+Ag2ONH4NO3ClCH2COOH+2Ag

5. Με αντιδραστήρια Fehling:

ClCH2CHO+CuONH4NO3ClCH2COOH+Cu2O

  • Οι αντιδράσεις 4-5 παρουσιάζονται απλοποιημένες και χρησιμοποιούνται γενικά για την ανίχνχνευση αλδεϋδομάδας (-CHO).

Προσθήκη ύδατος

Με προσθήκη ύδατος σε χλωραιθανάλη παράγεται, σε χημική ισορροπία, η μη απομονώσιμη ασταθής 2-χλωρο-1,1-αιθανοδιόλη[8]:

ClCH2CHO+H2OClCH2CH(OH)2

Προσθήκη 1,2-αιθανοδιόλης

Με προσθήκη 1,2-αιθανοδιόλης παράγεται 2-χλωρομεθυλο-1,3-διοξολάνιο[9]:

ClCH2CHO+HOCH2CH2OHH+H2O+ 2-χλωρομεθυλο-1,3-διοξολάνιο

Προσθήκη 1,2-αιθανοδιθειόλης

Με προσθήκη 1,2-αιθανοδιθειόλης παράγεται 2-χλωρομεθυλο-1,3-διθειολάνιο[10]:

ClCH2CHO+HSCH2CH2SHH+H2O+ 2-χλωρομεθυλο-1,3-διθειολάνιο

2-χλωρομεθυλο-1,3-διθειολάνιο +2H2NiCH3CH2Cl+CH3CH3+2H2S

Συμπύκνωση με «ενεργές» μεθυλενομάδες

Με την επίδραση «ενεργών» μεθυλενομάδων, δηλαδή ενώσεων του γενικού τύπου XCH2Y, όπου X,Y ηλεκτραρνητικές ομάδες όπως π.χ. κυανομάδα (CN), καρβαλκοξυομάδα (COOR), έχουμε την αντίδραση Knoevenagel[11]:

ClCH2CHO+XCH2YOHClCH2CH=CH(X)Y+H2O

Επίδραση φωσφοροϋλιδίων

Με επίδραση φωσφοροϋλιδίων [Ph3P+C-(R)R'] έχουμε τη λεγόμενη αντίδραση Wittig, με την οποία παράγεται 1,2-διαλκυλο-3-χλωρο-1-προπένιο[12]:

ClCH2CHO+Ph3P+C(R)R´ClCH2CH=CH(R)R´+Ph3PO

Προσθήκη διαφόρων πυρηνόφιλων αντιδραστηρίων

Είναι δυνατή η προσθήκη διαφόρων πυρηνόφιλων αντιδραστηρίων στον διπλό δεσμό C=Ο που περιέχει η χλωραιθανάλη. Π.χ.:[13]:

1. Με προσθήκη υδροκυανίου παράγεται αρχικά 2-υδροξυ-3-χλωροπροπανονιτρίλιο, από το οποίο με υδρόλυση μπορεί να παραχθεί 2-υδροξυ-3-χλωροπροπανικό οξύ:

ClCH2CHO+HCNClCH2CH(OH)CN+2H2OClCH2CH(OH)COONH4+HClClCH2CH(OH)COOH+NH4Cl

2. Με προσθήκη όξινου θειικού νατρίου παράγεται 1-υδροξυ-2-χλωραιθανοσουλφονικό οξύ:

ClCH2CHO+NaHSO3ClCH2CH(OH)SO3Na+HClClCH2CH(OH)SO3H+NaCl

3. Με προσθήκη πενταχλωριούχου φωσφόρου παράγεται 1,1,2-τριχλωραιθάνιο:

ClCH2CHO+PCl5ClCH2CHCl2+POCl3

Αλογόνωση

Με επίδραση αλογόνου (X2) έχουμε προσθήκη του στην ταυτομερή 2-χλωραιθενόλη. Παράγεται αρχικά η ασταθής 1,2-διαλο-2-χλωραιθανόλη που αφυδραλογονώνεται σχηματίζοντας τελικά αλοχλωραιθανάλη[14]:

ClCH=CHOH+X2CHClXCH(X)OHCHClXCHO+HX

Επίδραση υδραζωτικού οξέος

Με επίδραση υδραζωτικού οξέος παράγεται χλωραιθανονιτρίλιο και χλωρομεθυλαμινομεθανάλη[15]:

2ClCH2CHO+HN3H2SO4ClCH2CN+ClCH2NHCHO+N2

Προσθήκη αλκοολών

Με προσθήκη αλκοόλης (ROH) παράγεται αρχικά 1-αλκοξυ-2-χλωραιθανόλη και έπειτα, με περίσσεια αλκοόλης 1,1-διαλκοξυ-2-χλωραιθάνιο[16]:

ClCH2CHO+ROHH+ClCH2CH(OR)OH+ROHClCH2CH(OR)2+H2O

Τριμερισμός

Με επίδραση οξέος μπορεί να υποστεί τριμερισμό προς 2,4,6-τρι(χλωρομεθυλο)-1,3,5-τριοξάνιο[17]:

3ClCH2CHOH+ + 2,4,6-τρι(χλωρομεθυλο)-1,3,5-τριοξάνιο

Φωτοχημική προσθήκη σε αλκένια

Με επίδραση φθοραιθανάλης σε αιθένιο σχηματίζεται φωτοχημικά 2-χλωρομεθυλοξετάνιο (Αντίδραση Paterno–Büchi)[18] [19]:

CH2=CH2+ClCH2CHOhv 2-χλωρομεθυλοξετάνιο

Αντιδράσεις υποκατάστασης του χλωρίου

  • Οι αντιδράσεις είναι πιο αργές σε σύγκριση με τις αντίστοιχες αλαιθανάλες των άλλων αλογόνων, πλην του φθορίου.

Υποκατάσταση από υδροξύλιο

Κατά την υδρόλυσή του με εναιώρημα υδροξειδίου του αργύρου (AgOH) σχηματίζεται υδροξυαιθανάλη [20]:

ClCH2CHO+AgOHHOCH2CHO+AgCl

Υποκατάσταση από αλκοξύλιο

Με αλκοολικά άλατα (RONa) σχηματίζει αλκοξυαιθανάλη[20]:

ClCH2CHO+RONaROCH2CHO+NaCl

Υποκατάσταση από αλκινύλιο

Με αλκινικά άλατα (RC≡CNa) σχηματίζει αλκινυλαιθανάλη. Π.χ.[20]:

ClCH2CHO+RCCNaRCCCH2CHO+NaCl

Υποκατάσταση από ακύλιο

Με καρβονικά άλατα (RCOONa) σχηματίζει φορμυλομεθυλεστέρα (RCOOCH2CH3)[20]:

ClCH2CHO+RCOONaRCOOCH2CHO+NaCl

Υποκατάσταση από κυάνιο

Με κυανιούχο νάτριο (NaCN) σχηματίζει φορμυλαιθανονιτρίλιο[20]:

ClCH2CHO+NaCNOCHCH2CN+NaCl

Υποκατάσταση από αλκύλιο

Με αλκυλολίθιο (RLi) σχηματίζει αλδεΰδη[20]:

ClCH2CHO+RLiRCH2CHO+LiCl

Υποκατάσταση από σουλφυδρίλιο

Με όξινο θειούχο νάτριο (NaSH) σχηματίζει υδροθειαιθανάλη[20]:

ClCH3CHO+NaSHHSCH2CHO+NaCl

Υποκατάσταση από σουλφαλκύλιο

Με θειολικό νάτριο (RSNa) σχηματίζει αλκυλοθειαιθανάλη[20]:

ClCH2CHO+RSNaRSCH2CHO+NaCl

Υποκατάσταση από ιώδιο

Με ιωδιούχο νάτριο (NaI) σχηματίζει ιωδαιθανάλη[20]:

ClCH3CHO+NaIICH2CHO+NaCl

Υποκατάσταση από φθόριο

Με επίδραση φθοριούχου υφυδραργύρου (Hg2F2) σε χλωραιθανάλη, παράγεται φθοραιθανάλη[21]:

2ClCH2CHO+Hg2F22FCH2CHO+Hg2Cl2

Υποκατάσταση από νιτροομάδα

Με νιτρώδη άργυρο (AgNO2) σχηματίζει νιτραιθανάλη[22]:

ClCH3CHO+AgNO2O2NCH2CHO+AgCl

Υποκατάσταση από φαινύλιο

Με επίδραση τύπου Friedel-Crafts σε βενζολίου παράγεται φαινυλαιθανάλη[23]:

PhH+ClCH2CHOAlCl3PhCH2CHO+HCl

Αναγωγή

1. Με λιθιοαργιλλιοϋδρίδιο (LiAlH4) παράγεται αιθανόλη[24]:

4ClCH2CHO+2LiAlH44CH3CH2OH+LiCl+AlCl3+LiAlO2

2. Με «υδρογόνο εν τω γενάσθαι», δηλαδή μέταλλο + οξύ παράγεται αιθανόλη[25]:

ClCH2CHO+2Zn+3HClCH3CH2OH+2ZnCl2

3. Με σιλάνιο, παρουσία τριφθοριούχου βορίου, παράγεται αιθανάλη[26]:

ClCH2CHO+SiH4BF3CH3CHO+SiH3Cl

4. Αναγωγή από ένα αλκυλοκασσιτεράνιο. Π.χ.[27]:

ClCH2CHO+RSnH3CH3CHO+RSnH2Cl

Αντίδραση απόσπασης

Με απόσπαση υδροχλωρίου (HCl) από χλωραιθανάλη παράγεται αιθενόνη[28]:

ClCH2CHO+NaOHROHCH2=CO+NaCl+H2O

Επίδραση καρβενίων

Παρεμβολή καρβενίων, π.χ. με μεθυλενίου παράγονται 3-χλωροπροπανάλη, χλωροπροπανόνη και χλωρομεθυλοξιράνιο[29]:

FCH2CHO+CH2N2hv12ClCH2CH2CHO+14ClCH2COCH3+N2+14 χλωρομεθυλοξιράνιο

Επιδράσεις στο περιβάλλον

Η χλωραιθανάλη είναι ένας μεταβολίτης της αποσύνθεσης του 1,2-διχλωραιθάνιου, που τελικά μετατρέπεται σε 2-χλωραιθανόλη. Αυτή η μεταβολική οδός είναι σημαντική, αφού εκατομμύρια τόνοι 1,2-διχλωραιθάνιου παράγονται αφού είναι πρόδρομη ένωση για την παραγωγή χλωραιθένιου[30].

Αναφορές και σημειώσεις

  1. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.2.
  2. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.4.
  3. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.6.
  4. Reinhard Jira, Erwin Kopp, Blaine C. McKusick, Gerhard Röderer, Axel Bosch, Gerald Fleischmann “Chloroacetaldehydes“ in Ullmann's Encyclopedia of Industrial Chemistry, 2007, Wiley-VCH, Weinheim. doi:10.1002/14356007.a06_527.pub2.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.1.
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.2. και σελ. 187, §7.3.3α.
  7. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.221, §9.6.1,2.
  8. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.5α.
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.5β.
  10. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.2 και §9.5.5β
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.9.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.11.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.12.
  14. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.13.
  15. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.15.
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.221, §9.6.3.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.221, §9.6.5b.
  18. Πρότυπο:Cite journal
  19. Πρότυπο:Cite journal
  20. 20,0 20,1 20,2 20,3 20,4 20,5 20,6 20,7 20,8 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 186, §7.3.1.
  21. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.8.
  22. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244, §10.3.Α.
  23. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, §3.2. σελ.54
  24. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3α
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3β.
  26. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  27. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, Σελ. 42, §4.3.
  28. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1α.
  29. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3.
  30. Janssen, D. B.; van der Ploeg, J. R. and Pries, F., "Genetics and biochemistry of 1,2-dichloroethane degradation", Biodegradation, 1994, 5, 249-57.doi:10.1007/BF00696463

Πηγές

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Δημήτριου Ν. Νικολαΐδη: Ειδικά μαθήματα Οργανικής Χημείας, Θεσσαλονίκη 1983.

Πρότυπο:Αλδεΰδες