Αναλυτική γεωμετρία
Αναλυτική γεωμετρία είναι το είδος της γεωμετρίας που θεωρεί τον γεωμετρικό χώρο ως διανυσματικό χώρο. Κάθε διάνυσμα αντιστοιχεί σε ένα σημείο του χώρου, ενώ τα γεωμετρικά σχήματα και οι γεωμετρικές σχέσεις μεταξύ των σημείων και διάφορων σχημάτων περιγράφονται με διανυσματικές σχέσεις, τις οποίες μπορούμε να τις επεξεργαστούμε όπως και τις αλγεβρικές. Έτσι μέσω της αναλυτικής γεωμετρίας έγινε μια αλγεβροποίηση της γεωμετρίας, σε σημείο ώστε να υποστηρίζεται ότι πλέον η γεωμετρία δε χρειάζεται καθόλου αξιωματική θεμελίωση, αλλά αρκεί να στηριχθεί μέσω κατάλληλων ορισμών στην άλγεβρα.
Ιστορία
Αρχαία Ελλάδα
Ο Έλληνας μαθηματικός Μέναιχμος έλυνε προβλήματα και αποδείκνυε θεωρήματα χρησιμοποιώντας μια μέθοδο που έμοιαζε πολύ με τη χρήση των συντεταγμένων, γεγονός που μερικές φορές έχει υποστηριχθεί ότι εισήγαγε την αναλυτική γεωμετρία[1].
Ο Απολλώνιος ο Περγαίος, στο έργο Διωρισμένη τομή, ασχολήθηκε με προβλήματα με τρόπο που μπορεί να περιγραφεί ως μονοδιάστατη αναλυτική γεωμετρία, με ζητούμενο την εύρεση σημείων σε μια ευθεία που σχετίζονταν με άλλες[2]. Ο Απολλώνιος, στο έργο του Κωνικά, ανέπτυξε μια μέθοδο που μοιάζει τόσο πολύ με την αναλυτική γεωμετρία, ώστε το έργο του θεωρείται μερικές φορές ότι προηγήθηκε του έργου του Ντεκάρτ κατά περίπου 1.800 χρόνια. Η χρήση γραμμών αναφοράς, μιας διαμέτρου και μιας εφαπτομένης δεν διαφέρει πολύ από τη σύγχρονη χρήση ενός συστήματος συντεταγμένων, όπου οι αποστάσεις που μετρώνται κατά μήκος της διαμέτρου από το σημείο της εφαπτομένης αποτελούν την άβυσσο, και τα τμήματα που είναι παράλληλα στην εφαπτομένη και τέμνονται μεταξύ του άξονα και της καμπύλης αποτελούν τη διαταγμένη. Στη συνέχεια ανέπτυξε σχέσεις μεταξύ των τετμημένων και των αντίστοιχων κανονικών που είναι ισοδύναμες με τις ρητορικές εξισώσεις (εκφρασμένες με λέξεις) των καμπυλών. Ωστόσο, παρόλο που ο Απολλώνιος έφτασε κοντά στην ανάπτυξη της αναλυτικής γεωμετρίας, δεν τα κατάφερε επειδή δεν έλαβε υπόψιν του τα αρνητικά μεγέθη και, σε όλες τις περιπτώσεις, το σύστημα συντεταγμένων επικάλυπτε μια καμπύλη που είχε δοθεί εκ των υστέρων αντί για εκ των προτέρων. Με άλλα λόγια, οι εξισώσεις καθορίζονταν από τις καμπύλες, αλλά οι καμπύλες δεν καθορίζονταν από τις εξισώσεις. Οι συντεταγμένες, οι μεταβλητές και οι εξισώσεις ήταν επικουρικές έννοιες που εφαρμόζονταν σε μια συγκεκριμένη γεωμετρική κατάσταση [3].
Περσία
Ο Πέρσης μαθηματικός του 11ου αιώνα Ομάρ Καγιάμ είδε μια στενή σχέση μεταξύ γεωμετρίας και άλγεβρας και κινήθηκε προς τη σωστή κατεύθυνση όταν βοήθησε να κλείσει το χάσμα μεταξύ αριθμητικής και γεωμετρικής άλγεβρας[4] με τη γεωμετρική λύση των γενικών κυβικών εξισώσεων[5], ωστόσο το αποφασιστικό βήμα έγινε αργότερα με τον Ντεκάρτ.[4] Ο Ομάρ Καγιάμ πιστώνεται με τον προσδιορισμό των θεμελίων της αλγεβρικής γεωμετρίας και το βιβλίο του "Πραγματεία για την επίδειξη προβλημάτων της άλγεβρας" (1070), το οποίο καθόρισε τις αρχές της αναλυτικής γεωμετρίας, αποτελεί μέρος του σώματος των περσικών μαθηματικών που τελικά μεταδόθηκε στην Ευρώπη[6]. Λόγω της εμπεριστατωμένης γεωμετρικής προσέγγισης των αλγεβρικών εξισώσεων, ο Καγιάμ μπορεί να θεωρηθεί πρόδρομος του Ντεκάρτ στην εφεύρεση της αναλυτικής γεωμετρίας[7]Πρότυπο:Rp
Δυτική Ευρώπη
Η αναλυτική γεωμετρία εφευρέθηκε ανεξάρτητα από τον Ρενέ Ντεκάρτ και τον Πιερ ντε Φερμά,[8][9] αν και μερικές φορές αποδίδεται αποκλειστικά στον Ντεκάρτ.[10][11] Η καρτεσιανή γεωμετρία, ο εναλλακτικός όρος που χρησιμοποιείται για την αναλυτική γεωμετρία, πήρε το όνομά της από τον Ντεκάρτ.
Ο Ντεκάρτ σημείωσε σημαντική πρόοδο με τις μεθόδους σε ένα δοκίμιο με τίτλο La Géométrie (Η Γεωμετρία), ένα από τα τρία συνοδευτικά δοκίμια (παραρτήματα) που δημοσιεύτηκαν το 1637 μαζί με το έργο του Discourse on the Method for Rightly Directing One's Reason and Searching for Truth in the Sciences, που συνήθως αναφέρεται ως Discourse on Method. Το έργο La Geometrie, γραμμένο στη μητρική του γαλλική γλώσσα, και οι φιλοσοφικές αρχές του, αποτέλεσαν τη βάση για τον λογισμό στην Ευρώπη. Αρχικά το έργο δεν είχε καλή υποδοχή, εν μέρει λόγω των πολλών κενών στα επιχειρήματα και των περίπλοκων εξισώσεων. Μόνο μετά τη μετάφραση στα λατινικά και την προσθήκη σχολιασμού από τον φαν Σούτεν το 1649 (και περαιτέρω εργασίες στη συνέχεια) το αριστούργημα του Ντεκάρτ έτυχε της δέουσας αναγνώρισης[12].
Ο Πιερ ντε Φερμά διαδραμάτισε επίσης πρωτοποριακό ρόλο στην ανάπτυξη της αναλυτικής γεωμετρίας. Αν και δεν δημοσιεύθηκε όσο ζούσε, μια χειρόγραφη μορφή του Ad locos planos et solidos isagoge (Εισαγωγή στους επίπεδους και στερεούς τόπους) κυκλοφόρησε στο Παρίσι το 1637, λίγο πριν από τη δημοσίευση του Discourse του Descartes..[13][14][15] Η Εισαγωγή, καθαρά γραμμένη και καλοδεχούμενη, έθεσε επίσης τις βάσεις για την αναλυτική γεωμετρία. Η βασική διαφορά μεταξύ των επεξεργασιών του Φερμά και του Ντεκάρτ είναι θέμα οπτικής γωνίας: Ο Φερμά ξεκινούσε πάντα με μια αλγεβρική εξίσωση και στη συνέχεια περιέγραφε τη γεωμετρική καμπύλη που την ικανοποιούσε, ενώ ο Ντεκάρτ ξεκινούσε με γεωμετρικές καμπύλες και παρήγαγε τις εξισώσεις τους ως μία από τις διάφορες ιδιότητες των καμπυλών[12]. ως συνέπεια αυτής της προσέγγισης, ο Ντεκάρτ έπρεπε να ασχοληθεί με πιο περίπλοκες εξισώσεις και έπρεπε να αναπτύξει τις μεθόδους για να εργαστεί με πολυωνυμικές εξισώσεις υψηλότερου βαθμού. Ο Λέοναρντ Όιλερ ήταν ο πρώτος που εφάρμοσε τη μέθοδο των συντεταγμένων σε μια συστηματική μελέτη των καμπυλών και των επιφανειών του χώρου.
Αντιστοιχίες
- Σημείο: κάθε σημείο αντιστοιχίζεται σε ένα διάνυσμα , το διάνυσμα θέσης του (, όπου η αρχή των αξόνων)
- Ευθεία: μπορεί να οριστεί ως το σύνολο των σημείων που ικανοποιούν την εξίσωση της μορφής , όπου ένα σημείο που ανήκει στην ευθεία και ένα διάνυσμα ίδιας διεύθυνσης με την ευθεία.
- Επίπεδο: μπορεί να οριστεί ως το σύνολο των σημείων , όπου ένα σημείο που ανήκει στο επίπεδο και ένα διάνυσμα κάθετο στο επίπεδο.
Δείτε επίσης
Περαιτέρω ανάγνωση
Σημειώσεις
Ελληνικά άρθρα
Δημοσιεύσεις
Βιβλία
- Πρότυπο:Citation
- Πρότυπο:Citation
- John Casey (1885) Analytic Geometry of the Point, Line, Circle, and Conic Sections, link from Internet Archive.
- Πρότυπο:Citation
- Mikhail Postnikov (1982) Lectures in Geometry Semester I Analytic Geometry via Internet Archive
- Πρότυπο:Citation
Άρθρα
Παραπομπές
- ↑ Πρότυπο:Cite book
- ↑ Πρότυπο:Cite book
- ↑ Πρότυπο:Cite book
- ↑ 4,0 4,1 Πρότυπο:Cite book
- ↑ Πρότυπο:Cite journal
- ↑ Mathematical Masterpieces: Further Chronicles by the Explorers, p. 92
- ↑ Cooper, G. (2003). Journal of the American Oriental Society,123(1), 248-249.
- ↑ Πρότυπο:Cite book
- ↑ Πρότυπο:Harvnb
- ↑ Πρότυπο:Cite book
- ↑ Πρότυπο:Harvnb
- ↑ 12,0 12,1 Πρότυπο:Harvnb
- ↑ Πρότυπο:Harvnb
- ↑ Pierre de Fermat, Varia Opera Mathematica d. Petri de Fermat, Senatoris Tolosani (Toulouse, France: Jean Pech, 1679), "Ad locos planos et solidos isagoge," pp. 91–103. Πρότυπο:Webarchive
- ↑ "Eloge de Monsieur de Fermat" Πρότυπο:Webarchive (Eulogy of Mr. de Fermat), Le Journal des Scavans, 9 February 1665, pp. 69–72. From p. 70: "Une introduction aux lieux, plans & solides; qui est un traité analytique concernant la solution des problemes plans & solides, qui avoit esté veu devant que M. des Cartes eut rien publié sur ce sujet." (An introduction to loci, plane and solid; which is an analytical treatise concerning the solution of plane and solid problems, which was seen before Mr. des Cartes had published anything on this subject.)
Πρότυπο:Κλάδοι γεωμετρίας Πρότυπο:Authority control Πρότυπο:Portal bar