Θεώρημα Ουίλσον
Στην θεωρία αριθμών, το θεώρημα Ουίλσον (αναφέρεται και ως θεώρημα Wilson) λέει ότι ένας φυσικός αριθμός είναι πρώτος ανν ισχύει ότι[1]Πρότυπο:Rp[2]Πρότυπο:Rp[3]Πρότυπο:Rp[4]Πρότυπο:Rp[5]Πρότυπο:Rp[6]Πρότυπο:Rp[7]
- ,
όπου είναι το παραγοντικό του .
Δηλαδή το θεώρημα δίνει μία αναγκαία και ικανή συνθήκη για έναν αριθμό να είναι πρώτος. Το θεώρημα παίρνει το όνομά του από τον Τζον Ουίλσον.
Παραδείγματα
- Για , έχουμε ότι (και το είναι πρώτος).
- Για , έχουμε ότι (και το είναι πρώτος).
- Για , έχουμε ότι (και το είναι σύνθετος).
- Για , έχουμε ότι (και το είναι πρώτος).
- Για , έχουμε ότι (και το είναι σύνθετος).
- Για , έχουμε ότι (και το είναι πρώτος).
Απόδειξη
Με πολλαπλασιαστικά αντίστροφα
() Έστω ένας πρώτος αριθμός. Θα χρησιμοποιήσουμε ότι για κάθε υπάρχει ένας πολλαπλασιαστικός αντίστροφος στο , δηλαδή ένας αριθμός τέτοιος ώστε . Αυτό ισχύει καθώς ο είναι πρώτος σχετικά με τον . Αν ο είναι πολλαπλασιαστικός αντίστροφος του , τότε και ο είναι πολλαπλασιαστικός αντίστροφος του , καθώς . Επομένως, οι αντίστροφοι έρχονται σε δυάδες.
Θα δείξουμε ότι ο μόνοι αριθμοί που είναι αντίστροφοι του εαυτού τους είναι ο και ο . Έστω ότι ισχύει
- .
Τότε έχουμε ισοδύναμα ότι ή ισοδύναμα ότι (χρησιμοποιώντας την ταυτότητα για την διαφορά τετραγώνων). Επειδή ο είναι πρώτος έχουμε ότι ή άρα ή .
Συνεπώς, όλα τα έχουν πολλαπλασιαστικούς αντιστρόφους που έρχονται σε ζεύγη και έτσι χρησιμοποιώντας την αντιμεταθετική ιδιότητα του πολλαπλασιασμού απαλείφονται, άρα
- ,
που είναι και το ζητούμενο.
() Έστω ένας σύνθετος αριθμός. Τότε μπορεί να γραφτεί ως το γινόμενο δύο φυσικών αριθμών , δηλαδή . Διακρίνουμε δύο περιπτώσεις:
- Περίπτωση 1η (): Τότε και το και το εμφανίζεται στο γινόμενο , άρα το .
- Περίπτωση 2η (): Σε αυτή την περίπτωση δεν εμφανίζονται και το και το στο γινόμενο. Για είναι εύκολο να ελέγξουμε ότι η σχέση ισχύει. Για έχουμε ότι και άρα το και το (για τα οποία ισχύει ότι ) εμφανίζονται στο γινόμενο , και άρα .
Εφαρμογές
Από πρακτικής απόψεως, η συνθήκη αυτή δεν χρησιμοποιείται για να ελέγξουμε αν ένας αριθμός είναι πρώτος, καθώς ο υπολογισμός του χρειάζεται πράξεις, ενώ μπορούμε για παράδειγμα να ελέγξουμε απευθείας αν κάποιος από τους αριθμούς διαιρεί τον (που χρειάζεται πράξεις).Πρότυπο:R
Δείτε επίσης
Περαιτέρω ανάγνωση
Εξωτερικοί σύνδεσμοι
- Εφαρμογές του θεωρήματος Ουίλσον
- Διάλεξη για το μικρό θεώρημα του Φερμά και το θεώρημα Ουίλσον
- Cut the knot: Θεώρημα Ουίλσον
- Art of Problem Solving: Θεώρημα Ουίλσον