Κατάλογος ολοκληρωμάτων των υπερβολικών συναρτήσεων

Από testwiki
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Ακολουθεί o κατάλογος ολοκληρωμάτων (αντιπαράγωγων ολοκληρωμάτων) των υπερβολικών συναρτήσεων.[1][2] Για έναν πλήρη κατάλογο ολοκληρωτικών συναρτήσεων, δείτε τον κατάλογο ολοκληρωτικών.[3]

Σε όλους τους τύπους η σταθερά a θεωρείται μη μηδενική και το C δηλώνει τη σταθερά ολοκλήρωσης[4].

Τύποι ολοκλήρωσης μόνο υπερβολικές συναρτήσεις ημιτόνου

  • sinhaxdx=1acoshax+C
  • sinh2axdx=14asinh2axx2+C
  • sinhnaxdx={1an(sinhn1ax)(coshax)n1nsinhn2axdx,n>01a(n+1)(sinhn+1ax)(coshax)n+2n+1sinhn+2axdx,n<0,n1
  • dxsinhax=1aln|tanhax2|+C=1aln|coshax+1sinhax|+C=1aln|sinhaxcoshax+1|+C=12aln|coshax1coshax+1|+C
  • dxsinhnax=coshaxa(n1)sinhn1axn2n1dxsinhn2ax(for n1)
  • xsinhaxdx=1axcoshax1a2sinhax+C
  • (sinhax)(sinhbx)dx=1a2b2(a(sinhbx)(coshax)b(coshbx)(sinhax))+C(for a2b2)

Τύποι ολοκλήρωσης μόνο υπερβολικές συναρτήσεις συνημιτόνου

  • coshaxdx=1asinhax+C
  • cosh2axdx=14asinh2ax+x2+C
  • coshnaxdx={1an(sinhax)(coshn1ax)+n1ncoshn2axdx,n>01a(n+1)(sinhax)(coshn+1ax)+n+2n+1coshn+2axdx,n<0,n1
  • dxcoshax=2aarctaneax+C=1aarctan(sinhax)+C
  • dxcoshnax=sinhaxa(n1)coshn1ax+n2n1dxcoshn2ax(for n1)
  • xcoshaxdx=1axsinhax1a2coshax+C
  • x2coshaxdx=2xcoshaxa2+(x2a+2a3)sinhax+C
  • (coshax)(coshbx)dx=1a2b2(a(sinhax)(coshbx)b(sinhbx)(coshax))+C(for a2b2)
  • dx1+cosh(ax)=2a11+eax+C ή 2a επί τη λογιστική συνάρτηση

Λοιπά ολοκληρώματα

Ολοκληρώματα των υπερβολικών εφαπτόμενων, συνεφαπτομένων, τεμνουσών, συντεμνουσών συναρτήσεων

  • tanhxdx=lncoshx+C
  • tanh2axdx=xtanhaxa+C
  • tanhnaxdx=1a(n1)tanhn1ax+tanhn2axdx(for n1)
  • cothxdx=ln|sinhx|+C, for x0
  • cothnaxdx=1a(n1)cothn1ax+cothn2axdx(for n1)
  • sechxdx=arctan(sinhx)+C
  • cschxdx=ln|tanhx2|+C=ln|cothxcschx|+C, for x0

Τύποι ολοκλήρωσης των υπερβολικών συναρτήσεων ημιτόνου και συνημιτόνου

  • (coshax)(sinhbx)dx=1a2b2(a(sinhax)(sinhbx)b(coshax)(coshbx))+C(for a2b2)
  • coshnaxsinhmaxdx=coshn1axa(nm)sinhm1ax+n1nmcoshn2axsinhmaxdx(for mn)=coshn+1axa(m1)sinhm1ax+nm+2m1coshnaxsinhm2axdx(for m1)=coshn1axa(m1)sinhm1ax+n1m1coshn2axsinhm2axdx(for m1)
  • sinhmaxcoshnaxdx=sinhm1axa(mn)coshn1ax+m1nmsinhm2axcoshnaxdx(for mn)=sinhm+1axa(n1)coshn1ax+mn+2n1sinhmaxcoshn2axdx(for n1)=sinhm1axa(n1)coshn1ax+m1n1sinhm2axcoshn2axdx(for n1)

Τύποι ολοκλήρωσης των υπερβολικών και τριγωνομετρικών συναρτήσεων

  • sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)+C
  • sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)+C
  • cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)+C
  • cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)+C

Εξωτερικοί σύνδεσμοι

Δείτε επίσης

Βιβλιογραφία

Παραπομπές

Πρότυπο:Reflist

Πηγές

Πρότυπο:Κατάλογοι ολοκληρωμάτων Πρότυπο:Portal bar Πρότυπο:Authority control