Κατάλογος ολοκληρωμάτων των Γκαουσιανών συναρτήσεων

Από testwiki
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Ακολουθεί ο Κατάλογος ολοκληρωμάτων των Γκαουσιανών συναρτήσεων.

φ(x)=12πe12x2

είναι η Κανονική κατανομή πυκνότητας,

Φ(x)=xφ(t)dt=12[1+erf(x2)]

και η αντίστοιχη αθροιστική συνάρτηση κατανομής (όπου erf είναι η συνάρτηση σφάλματος[1]) και

T(h,a)=φ(h)0aφ(hx)1+x2dx

είναι η συνάρτηση T του Όουεν.

Ο Όουεν [2] διαθέτει έναν εκτενή κατάλογο ολοκληρωμάτων Γκαουσιανών συναρτήσεων - παρακάτω παρατίθεται μόνο ένα μέρος του.

Αόριστα ολοκληρώματα

  • φ(x)dx=Φ(x)+C
  • xφ(x)dx=φ(x)+C
  • x2φ(x)dx=Φ(x)xφ(x)+C
  • x2k+1φ(x)dx=φ(x)j=0k(2k)!!(2j)!!x2j+C[3]
  • x2k+2φ(x)dx=φ(x)j=0k(2k+1)!!(2j+1)!!x2j+1+(2k+1)!!Φ(x)+C

τα δύο προηγούμενα ολοκληρώματα, Πρότυπο:Math είναι το διπλό παραγοντικό: για ζυγό Πρότυπο:Mvar είναι ίσο με το γινόμενο όλων των ζυγών αριθμών από το 2 έως το Πρότυπο:Mvar, και για μονό Πρότυπο:Mvar είναι το γινόμενο όλων των περιττών αριθμών από το 1 έως το Πρότυπο:Mvar- επιπλέον θεωρείται ότι Πρότυπο:Math.

  • φ(x)2dx=12πΦ(x2)+C
  • φ(x)φ(a+bx)dx=1tφ(at)Φ(tx+abt)+C,t=1+b2[4]
  • xφ(a+bx)dx=1b2[φ(a+bx)+aΦ(a+bx)]+C
  • x2φ(a+bx)dx=1b3[(a2+1)Φ(a+bx)+(abx)φ(a+bx)]+C
  • φ(a+bx)ndx=1bn(2π)n1Φ(n(a+bx))+C
  • Φ(a+bx)dx=1b[(a+bx)Φ(a+bx)+φ(a+bx)]+C
  • xΦ(a+bx)dx=12b2[(b2x2a21)Φ(a+bx)+(bxa)φ(a+bx)]+C
  • x2Φ(a+bx)dx=13b3[(b3x3+a3+3a)Φ(a+bx)+(b2x2abx+a2+2)φ(a+bx)]+C
  • xnΦ(x)dx=1n+1[(xn+1nxn1)Φ(x)+xnφ(x)+n(n1)xn2Φ(x)dx]+C
  • xφ(x)Φ(a+bx)dx=btφ(at)Φ(xt+abt)φ(x)Φ(a+bx)+C,t=1+b2
  • Φ(x)2dx=xΦ(x)2+2Φ(x)φ(x)1πΦ(x2)+C
  • ecxφ(bx)ndx=ec22nb2bn(2π)n1Φ(b2xncbn)+C,b0,n>0

Οριστικά ολοκληρώματα

  • x2φ(x)ndx=1n3(2π)n1
  • φ(x)φ(a+bx)dx=11+b2φ(a1+b2)
  • 0φ(ax)Φ(bx)dx=12π|a|(π2arctan(b|a|))
  • 0φ(ax)Φ(bx)dx=12π|a|(π2+arctan(b|a|))
  • 0xφ(x)Φ(bx)dx=122π(1+b1+b2)
  • 0x2φ(x)Φ(bx)dx=14+12π(b1+b2+arctan(b))
  • xφ(x)2Φ(x)dx=14π3
  • 0Φ(bx)2φ(x)dx=12π(arctan(b)+arctan1+2b2)
  • Φ(a+bx)2φ(x)dx=Φ(a1+b2)2T(a1+b2,11+2b2)
  • xΦ(a+bx)2φ(x)dx=2b1+b2φ(at)Φ(a1+b21+2b2)[5]
  • Φ(bx)2φ(x)dx=1πarctan1+2b2
  • xφ(x)Φ(bx)dx=xφ(x)Φ(bx)2dx=b2π(1+b2)
  • Φ(a+bx)φ(x)dx=Φ(a1+b2)
  • xΦ(a+bx)φ(x)dx=b1+b2φ(a1+b2),
  • 0xΦ(a+bx)φ(x)dx=btφ(at)Φ(abt)+12πΦ(a),t=1+b2
  • ln(x2)1σφ(xσ)dx=ln(σ2)γln2ln(σ2)1.27036

Εξωτερικοί σύνδεσμοι

Δείτε επίσης

Βιβλιογραφία

Παραπομπές

Πρότυπο:Reflist

Πρότυπο:Refbegin

Πρότυπο:Refend

Πηγές

Πρότυπο:Κατάλογοι ολοκληρωμάτων Πρότυπο:Portal bar Πρότυπο:Authority control

  1. Πρότυπο:Cite web
  2. Πρότυπο:Harvnb.
  3. Πρότυπο:Harvtxt lists this integral without the minus sign, which is an error. See calculation by WolframAlpha.
  4. Πρότυπο:Harvtxt report this integral with error, see WolframAlpha.
  5. Πρότυπο:Harvtxt report this integral incorrectly by omitting x from the integrand.